
Particle Swarm Scheduling for Work-Flow
Applications in Distributed Computing
Environments

Ajith Abraham1,2, Hongbo Liu2,3 and Mingyan Zhao3

1 Centre for Quantifiable Quality of Service in Communication Systems, Faculty
of Information Technology, Mathematics and Electrical Engineering, Norwegian
University of Science and Technology, NO-7491 Trondheim, Norway.
ajith.abraham@ieee.org, http://www.softcomputing.net

2 School of Computer Science and Engineering, Dalian Maritime University,
116026 Dalian, China. lhb@dlut.edu.cn

3 School of Software, Dalian University of Technology, 116620 Dalian, China.
mingy zhao@163.com

Abstract: Recently, the scheduling problem in distributed data-intensive
computing environments has been an active research topic. This Chapter
models the scheduling problem for work-flow applications in distributed data-
intensive computing environments (FDSP) and makes an attempt to formulate
the problem. Several meta-heuristics inspired from particle swarm optimiza-
tion algorithm are proposed to formulate efficient schedules. The proposed
variable neighborhood particle particle swarm optimization algorithm is com-
pared with a multi-start particle swarm optimization and multi-start genetic
algorithm. Experiment results illustrate the algorithm performance and its
feasibility and effectiveness for scheduling work-flow applications.

1 Introduction

With the development of the high performance computing (HPC), computa-
tional grid, etc., some complex applications are designed by communities of
researchers in domains such as chemistry, meteorology, high-energy physics,
astronomy, biology and human brain planning (HBP) [1],[2]. For implement-
ing and utilizing successfully those applications, one of the most important
task is to find appropriate schedules before the application is executed. The
goal is to find an optimal assignment of tasks in the applications with respect
to the costs of the available resources. However, the scheduling problem in
distributed data-intensive computing environments seems quite different from
the conventional situation. Scheduling jobs and resources in data-intensive ap-
plications need to meet the specific requirements, including process flow, data

2 Abraham, Liu and Zhao

access/transfer, completion cost, flexibility and availability. All kinds of com-
ponents in the application can interact with each other directly or indirectly.
Scheduling algorithm in traditional computing paradigms barely consider the
data transfer problem during mapping computational tasks, and this negli-
gence would be costly in the case of distributed data-intensive applications
[3].

Priority scheduling plays a crucial role in the differentiated services ar-
chitecture for the provisioning of Quality-of-Service (QoS) of network-based
applications. Jin and Min [17] proposed a novel analytical model for prior-
ity queuing systems subject to heterogeneous Long Range Dependent (LRD)
self-similar or Short Range Dependent (SRD) Poisson traffic. Authors [17]
applied the generalized Schilder’s theorem to deal with heterogeneous traffic
and further develop the analytical upper and lower bounds of the queue length
distributions for individual traffic flows.

Sabrina et al. [18], discuss issues in designing resource schedulers for
processing engines in programmable networks. Authors developed two CPU
scheduling algorithms that could schedule CPU resource adaptively among all
the competing flows. One of the packet scheduling algorithm is called start
time weighted fair queueing that does not require packet processing times and
the other one is called prediction based fair queueing, which uses a prediction
algorithm to estimate CPU requirements of packet.

Rodrigues et al. [19] proposed a branch and bound approach based on
constraint-based search (CBS) for scheduling of continuous processes. Tasks
time-windows are submitted to a constraint propagation procedure that iden-
tifies existing orderings among tasks and linear programming is used to deter-
mine the optimal flow rate for each bucket whenever all buckets are ordered
in the branch and bound.

In this chapter, we introduce the scheduling problem for work-flow ap-
plications in distributed data-intensive computing environments. Rest of the
Chapter is organized as follows. We model and formulate the problem in Sec-
tion 2. We present an approach based on particle swarm algorithm based
heuristics in Section 3. In Section 4, experiment results and discussions are
provided. Finally, we conclude our work in the chapter.

2 Problem formulation

The scheduling problem in distributed data-intensive computing environments
has been an active research topic, and therefore many terminologies have been
suggested. Unfortunately, some of these technical terms are neither clearly
stated nor consistently used by different researchers, which frequently makes
readers confused. For clarity purposes, some key terminologies are re-defined
for formulating the problem.

• Machine (computing unit)
Machine (computing unit) is a set of computational resources with limited

Particle Swarm Heuristics for FDSP 3

capacities. It may be a simple personal machine, a workstation, a super-
computer, or a cluster of workstations. The computational capacity of
the machine is depend on its number of CPUs, amount of memory, basic
storage space and other specializations. In other words, each machine has
its calculating speed, which can be expressed in number of Cycles Per Unit
Time (CPUT).

• Data Resource
Data resources are the datasets, which effect the scheduling. They are
commonly located on various storage repositories or data hosts. Data re-
sources are connected to the computational resources (machines) by links
of different bandwidths.

• Job and Operation
A job is considered as a single set of multiple atomic operations/tasks.
Each operation will be typically allocated to execute on one single ma-
chine without preemption. It has input and output data, and processing
requirements in order to complete its task. One of the most important
processing requirements is the work-flow, which is the ordering of a set of
operations for a specific application. These operations can be started only
after the completion of the previous operations from this sequence, which
is the so-called workflow constraints. The operation has the processing
length in number of cycles.

• Work-flow Application
A work-flow application consists of a collection of interacting components
that need to be executed in a certain partial order for solving successful
a certain problem. The components involve a number of dependent or
independent jobs, machines, the bandwidth of the network, etc. They have
specific control and data dependencies between them.

• Schedule and Scheduling Problem
A schedule is the mapping of the tasks to specific time intervals of ma-
chines. A scheduling problem is specified by a set of machines, a set
of jobs/operations, optimality criteria, environmental specifications, and
by other constraints. The Scheduling Problem for work-flow applications
in distributed Data-intensive computing environments is abbreviated as
“FDSP”.

To formulate the scheduling problem, suppose a work-flow application
comprises of q Jobs {J1, J2, · · · , Jq}, m Machines {M1,M2, · · · ,Mm} and k
Data hosts {D1, D2, · · · , Dk}. In the application considered, the processing
speeds of the machine are {P1, P2, · · · , Pm}. Each job consists of a set of op-
erations Jj = {Oj,1, Oj,2, · · · , Oj,p}. For convenience, we will decompose all
the jobs to atomic operations and re-sort the operations as {O1, O2, · · · , On}.
The processing lengths of the operation are {L1, L2, · · · , Ln}. All the oper-
ations are in the specific work-flow, and they will be carried orderly on the
machines with data retrieval, data input and data output.

4 Abraham, Liu and Zhao

The operations in the work-flow can be represented as or transformed to
a Directed Acyclic Graph (DAG), where each node in the DAG represents
an operation and the edges denote control/data dependencies. The relation
between the operations can be represented by a flow matrix F = [fi,j], in
which the element fi,j stores the weight value if the edge < Oi, Oj > is in the
graph, otherwise it is set to “-1”. Figure 1 depicts a work-flow of 9 operations.
The recursive loop between O1 and O9 can be neglected when the scheduling
focus on the stage within the loop. Its flow matrix F is represented as follows:

−1 8 3 9 −1 −1 −1 −1 −1
−1 −1 −1 −1 5 6 −1 −1 −1
−1 −1 −1 −1 −1 2 12 11 −1
−1 −1 −1 −1 −1 −1 −1 7 −1
−1 −1 −1 −1 −1 −1 −1 −1 13
−1 −1 −1 −1 −1 −1 −1 −1 4
−1 −1 −1 −1 −1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1 −1 −1 8
−1 −1 −1 −1 −1 −1 −1 −1 −1

Begin

End

2 4

1

3

65 87

9

8 3 9

11 76 2 125

813 4 1

Fig. 1. A works-flow application with 9 operations.

The data host dependencies of the operations are determined by the re-
trieval matrix R = [ri,j]. The element ri,j is the retrieval time, which Oi

Particle Swarm Heuristics for FDSP 5

executes retrieval processing on the data host Dj . There are the other ma-
trices A = [ai,j] and B = [bi,j], where the element ai,j in the former is the
distance between between the machine Mi and Mj , and the element bi,j in the
latter is the distance between the machine Mi and the data host Dj . For each
operation, its completion time is the sum of three components: the input data
time, the retrieval data time, and the execution time on the assigned machine.
It is to be noted that the input data time can be started to accumulate only
after the completion of the previous operations in the work-flow.

Given a feasible solution S = {S1, S2, · · · , Sn}, Si is the serial num-
ber of the machine, which the operation Oi is assigned on. Define COi

(i ∈ {1, 2, · · · , n}) as the completion time that the machine MSi finishes the
operation Oi. For the operation Oi, its completion time COi

can be calculated
by Eq. (1).

COi
=

n∑

l=1
fl,i 6=−1

fl,iaSl,Si
+

k∑

h=1

ri,hbSi,h + Li/PSi
(1)

To formulate the objective,
∑

CMi represents the time that the machine
Mi completes the processing of all the operations assigned on it. Define
Cmax = max{∑CMi} as the makespan, and Csum =

∑m
i=1(

∑
CMi) as the

flowtime. The scheduling problem is thus to both determine an assignment
and a sequence of the operations on all machines that minimize some criteria.
Most important optimality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;
2. the sum of the completion times (flowtime): Csum.

Minimizing Csum asks the average operation is finished quickly, at the ex-
pense of the largest operation taking a long time, whereas minimizing Cmax,
asks that no operation takes too long, at the expense of most operations taking
a long time. Minimization of Cmax would result in maximization of Csum. The
weighted aggregation is the most common approach to the problems. Accord-
ing to this approach, the objectives, F1 = min{Cmax} and F2 = min{Csum},
are aggregated as a weighted combination:

F = w1min{F1}+ w2min{F2} (2)

where w1 and w2 are non-negative weights, and w1 + w2 = 1. These weights
can be either fixed or adapt dynamically during the optimization. The fixed
weights, w1 = w2 = 0.5, are used in this article. In fact, the dynamic weighted
aggregation mainly takes Cmax into account [4] because Csum is commonly
much larger than Cmax and the solution has a large weight on Csum during
minimizing of the objective. Alternatively, the weights can be changed grad-
ually according to the Eqs. (3) and (4). The changes in the dynamic weights
(R = 200) are illustrated in Figure 2.

6 Abraham, Liu and Zhao

w1(t) = |sin(2πt/R)| (3)

w2(t) = 1− w1(t) (4)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Iteration

w
1,

w
2

Fig. 2. Changes in dynamic weights.

3 Particle Swarm Heuristics for FDSP

3.1 Canonical Model

Particle swarm algorithm is inspired by social behavior patterns of organ-
isms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of
bees, and even human social behavior, from which the Swarm Intelligence(SI)
paradigm has emerged [5, 6]. It could be implemented and applied easily to
solve various function optimization problems, or the problems that can be
transformed to function optimization problems.

As an algorithm, its main strength is its fast convergence, which compares
favorably with many global optimization algorithms [7, 8, 9]. The canoni-
cal PSO model consists of a swarm of particles, which are initialized with a
population of random candidate solutions. They move iteratively through the
d-dimension problem space to search the new solutions, where the fitness, f ,
can be calculated as the certain qualities measure.

Each particle has a position represented by a position-vector xi (i is the
index of the particle), and a velocity represented by a velocity-vector vi. Each
particle remembers its own best position so far in a vector x#

i , and its j-th
dimensional value is x#

ij . The best position-vector among the swarm so far is
then stored in a vector x∗, and its j-th dimensional value is x∗j . During the
iteration time t, the update of the velocity from the previous velocity to the

Particle Swarm Heuristics for FDSP 7

new velocity is determined by Eq.(5). The new position is then determined
by the sum of the previous position and the new velocity by Eq.(6).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t)− xij(t)) + c2r2(x∗j (t)− xij(t)). (5)

xij(t + 1) = xij(t) + vij(t + 1). (6)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1

is a positive constant, called as coefficient of the self-recognition component,
c2 is a positive constant, called as coefficient of the social component.

From Eq.(5), a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience
of its most successful particle in the swarm. In the particle swarm model,
the particle searches the solutions in the problem space with a range [−s, s]
(If the range is not symmetrical, it can be translated to the corresponding
symmetrical range.) In order to guide the particles effectively in the search
space, the maximum moving distance during one iteration must be clamped
in between the maximum velocity [−vmax, vmax] given in Eq.(7):

vij = sign(vij)min(|vij | , vmax). (7)

xi,j = sign(xi,j)min(|xi,j | , xmax) (8)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be
s, i.e. p = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 1.

Algorithm 1 Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t− 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t− 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(5), (6), (7), (8);
12. Next j
13. Next i
14. End While.

The termination criteria are usually one of the following:

8 Abraham, Liu and Zhao

• Maximum number of iterations: the optimization process is terminated
after a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is
terminated after some fixed number of iterations without any improve-
ment.

• Minimum objective function error: the error between the obtained ob-
jective function value and the best fitness value is less than a pre-fixed
anticipated threshold.

The role of inertia weight w, in Eq.(5), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact
of the previous history of velocities on the current one. Accordingly, the pa-
rameter w regulates the trade-off between the global (wide-ranging) and local
(nearby) exploration abilities of the swarm. A large inertia weight facilitates
global exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e. fine-tuning the current search area. A suitable value
for the inertia weight w usually provides balance between global and local
exploration abilities and consequently results in a reduction of the number
of iterations required to locate the optimum solution. Initially, the inertia
weight is set as a constant. However, some experiment results indicates that
it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more
refined solutions [10, 11]. Thus, an initial value around 1.2 and gradually re-
ducing towards 0 can be considered as a good choice for w. A better method
is to use some adaptive approaches (example: fuzzy controller), in which the
parameters can be adaptively fine tuned according to the problem under con-
sideration [12, 13].

The parameters c1 and c2, in Eq.(5), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. As default values, usually, c1 = c2 = 2 are used,
but some experiment results indicate that c1 = c2 = 1.49 might provide even
better results. Recent work reports that it might be even better to choose a
larger cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤
4 [16].

The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by
each individual’s previous best success and the success of some other particle.
Various methods have been used to identify some other particle to influence
the individual. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [5]. In the lbest model, particles have information
only of their own and their nearest array neighbors’ best (lbest), rather than
that of the entire group.

In the gbest model, the trajectory for each particle’s search is influenced by
the best point found by any member of the entire population. The best particle
acts as an attractor, pulling all the particles towards it. Eventually all particles

Particle Swarm Heuristics for FDSP 9

will converge to this position. The lbest model allows each individual to be
influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood.

Typically lbest neighborhoods comprise exactly two neighbors. When the
number of neighbors increases to all but itself in the lbest model, the case is
equivalent to the gbest model. Some experiment results testified that gbest
model converges quickly on problem solutions but has a weakness for becom-
ing trapped in local optima, while lbest model converges slowly on problem
solutions but is able to “flow around” local optima, as the individuals explore
different regions. The gbest model has faster convergence. But very often for
multi-modal problems involving high dimensions it tends to suffer from pre-
mature convergence.

3.2 Variable Neighborhood Particle Swarm Optimization
Algorithm (VNPSO)

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighborhoods of growing size to iden-
tify better local optima with shaking strategies [14, 15]. More precisely, VNS
escapes from the current local minimum x∗ by initiating other local searches
from starting points sampled from a neighborhood of x∗, which increases its
size iteratively until a local minimum is better than the current one is found.
These steps are repeated until a given termination condition is met. The
metaheuristic method, Variable Neighborhood Particle Swarm Optimization
(VNPSO) algorithm, was originally inspired by VNS [20]. In PSO, if a par-
ticle’s velocity decreases to a threshold vc, a new velocity is assigned using
Eq.(9):

vij(t) = wv̂ + c1r1(x
#
ij(t− 1)− xij(t− 1)) + c2r2(x∗j (t− 1)− xij(t− 1)) (9)

v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/η if |vij | < vc

(10)

The VNPSO algorithm scheme is summarized as Algorithm 2. The perfor-
mance of the algorithm is directly correlated to two parameter values, vc and
η. A large vc shortens the oscillation period, and it provides a great probability
for the particles to leap over local minima using the same number of iterations.
But a large vc compels the particles in the quick “flying” state, which leads
them not to search the solution and forcing them not to refine the search. The
value of η changes directly the variable search neighborhoods for the particles.
It is to be noted that the algorithm is different from the multi-start technique.
We also implemented the Multi-Start Particle Swarm Optimization (MSPSO)
(illustrated in Algorithm 3) and the Multi-Start Genetic Algorithm (MSGA)
to compare the empirical performances.

10 Abraham, Liu and Zhao

Algorithm 2 Variable Neighborhood Particle Swarm Optimization
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ = argminn

i=1(f(x∗(t− 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t− 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(5),(7),(6),(8);
15. else
16. Update the j-th dimension value of xi and vi

17. according to Eqs.(10),(9),(6),(8).
18. Next j
19. Next i
20. End While.

Algorithm 3 Multi-start Particle Swarm Optimization
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ = argminn

i=1(f(x∗(t− 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t− 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(5),(7),(6),(8);
15. else
16. Re-initialize the positions and the velocities
17. for all the particles randomly.
18. Next j
19. Next i
20. End While.

Particle Swarm Heuristics for FDSP 11

For applying PSO successfully for the FDSP problem, one of the key is-
sues is the mapping of the problem solution to the PSO particle space, which
directly affects its feasibility and performance. We setup a search space of
n dimension for an (n − Operations, m − Machines) FDSP problem. Each
dimension was limited to [1, m + 1). For example, consider a little scale
(7 − Operations, 3 − Machines) FDSP, Fig. 3 shows a mapping between a
one possible assignment instance to a particle position coordinates in the
PSO domain. Each dimension of the particle’s position maps one operation,
and the value of the position indicates the machine number to which this
task/operation is assigned to during the course of PSO. So the value of a
particle’s position should be an integer but after updating the velocity and
position of the particles, the particle’s position may appear real values such
as 1.4, etc. It is meaningless for the assignment. Therefore, in the algorithm
we usually round off the real optimum value to its nearest integer number.
By this way, we convert a continuous optimization algorithm to a scheduling
problem. The particle’s position is a series of priority levels of assigned ma-
chines according to the order of operations. The sequence of the operations
will be not changed during the iteration.

Fig. 3. The Mapping between particle and FJSP.

Since the particle’s position indicates the potential schedule, the position
can be “decoded” to the feasible solution. It is to be noted that the position
matrix may violate the work-flow constraints. The starting point of operations
must be started only after the completion of the previous latest operation in
the work-flow. The best situation is the starting point of the operation in
alignment with the ending point of its previous latest operation. After all the
operations have been processed, we get the feasible scheduling solution and
then calculate the cost of the solution.

12 Abraham, Liu and Zhao

4 Experiment Results and Algorithm Performance
Demonstration

To illustrate the effectiveness and performance of the particle swarm searching
algorithm, three representative instances based on practical data have been se-
lected. In our experiments, the algorithms used for comparison were VNPSO,
MSPSO (Multi-start PSO) and MSGA (Multi-start GA). In VNPSO, η and
vc were set to 2 and 1e-7 before 15,000 iterations, while they were set to 5 and
1e-10 after 15,000 iterations. Other specific parameter settings of the different
algorithms are described in Table 1. The algorithms were run 20 times with
different random seeds. Each trial had a fixed number of 2,000 iterations. The
average fitness values of the best solutions throughout the optimization run
were recorded. Usually another emphasis will be to generate the schedules at
a minimal amount of time. So the completion time for 20 trials were used as
one of the criteria to improve their performance.

Table 1. Parameter settings for the algorithms.

Algorithm Parameter name Parameter value

Size of the population 20
GA Probability of crossover 0.9

Probability of mutation 0.09
Swarm size 20
Self-recognition coefficient c1 1.49

PSOs Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1
Clamping Coefficient ρ 0.5

We illustrate a small scale FDSP problem involving an application with 9
operations, 3 machines and 3 data hosts represented as (O9,M3, D3) problem.
The speeds of the 3 machines are 4, 3, 2 CPUT, respectively, i.e., P = {4, 3, 2}.
The length of the 9 operations are 6,12,16,20,28,36,42,52,60 cycles, respec-
tively, i.e., L = {6, 12, 16, 20, 28, 36, 42, 52, 60}. The flow matrix is F as de-
picted in Section 2, and all other information are as follows:

R =

6 18 76
50 4 51
1 85 15
19 11 1
39 12 0
73 0 1
57 29 77
36 0 74
61 82 30

Particle Swarm Heuristics for FDSP 13

A =

0 21 95
21 0 41
95 41 0

B =

0 45 91
45 0 59
91 59 0

Figure 4 illustrates the performance of the three algorithms during the
search processes for (O9,M3, D3) problem. The best scheduling solution in
the 20 MSGA runs is {3, 1, 2, 3, 1, 1, 1, 3, 1}, in which the makespan is 23654
and the flowtime is 34075.

The best scheduling solution obtained in the 20 MSPSO and VNPSO runs
is {3, 1, 2, 3, 1, 1, 2, 3, 2}, in which the makespan is 15011 and the flowtime is
30647. While MSPSO provides the best results 8 times in 20 runs, VNPSO
provides the best result 10 times in the same runs respectively.

Figure 5 provides an optimal schedule for ((O9,M3, D3) problem, in which
“W” means the waiting time. As depicted in 5, the operations O2 and O3 both
have to wait for 1611 time units before they are processed in the scheduling
solution.

Further, we tested the three algorithms for two more FDSP problems,
i.e. (O10,M3, D3) and (O12,M4, D3). Empirical results are illustrated in
Table 2. In general, VNPSO performs better than the other two approaches,
although its computational time is worse than MSPSO. VNPSO could be an
ideal approach for solving the large scale problems when other algorithms
failed to give a better solution.

Table 2. Comparison of performance for different FDSPs.

Instance Items MSGA MSPSO VNPSO

average 28864 24152 28.8000
(O9, M3, D3)

time 200.2780 133.6920 181.2970
average 21148 19594 16389

(O10, M3, D3)
time 210.6230 138.5890 140.3920
average 16146 14692 14412

(O12, M4, D3)
time 235.1080 152.5520 154.4420

5 Conclusions

In this chapter, we modeled and formulated the scheduling problem for
work-flow applications in distributed data-intensive computing environments
(FDSP). A particle swarm optimization based variable neighborhood search

14 Abraham, Liu and Zhao

Fig. 4. Performance for the FDSP (O9, M3, D3)

Fig. 5. A scheduling solution for the FDSP (O9, M3, D3)

is proposed to solve the problem. Empirical results demonstrate that the pro-
posed VNPSO algorithm is feasible and effective. VNPSO can be applied
in distributed data-intensive applications to meet the specified requirements,
including work-flow constraints, data retrieval/transfer, job interaction, min-
imum completion cost, flexibility and availability.

Our future research is targeted to generate more FDSP instances and in-
vestigate more optimization/meta-heuristic approaches.

Particle Swarm Heuristics for FDSP 15

6 Acknowledgements

This work was partly supported by NSFC (60373095), DLMU (DLMU-ZL-
200709) and the Research Council, NTNU and UNINETT.

References

1. I. Foster and C. Kesselman (Eds.) “ The Grid: Blueprint for a New Computing
Infrastructure”. Morgan-Kaufmann, 1998.
S. Venugopal, and R. Buyya. “A Set Coverage-based Mapping Heuristic for
Scheduling Distributed Data-Intensive Applications on Global Grids”. Techni-
cal Report, GRIDS-TR-2006-3, Grid Computing and Distributed Systems Lab-
oratory, The University of Melbourne, Australia, March 8, 2006.

2. N. Zhong, J. Hu, S. Motomura, J. Wu, and C. Liu. “Building A Data-mining
Grid for Multiple Human Brain Data Analysis”. Computational Intelligence,
2005, 21(2), pp. 177.

3. F. Dong, and S.G. Akl. “Scheduling Algorithms for Grid Computing: State of
the Art and Open Problems”. Technical Report, 2006-504, School of Computing,
Queen’s University, Canada, January 2006.

4. K.E. Parsopoulos, and M.N. Vrahatis. “Recent Approaches to Global Opti-
mization Problems through Particle Swarm Optimization”. Natural Computing,
2002, 1, pp. 235–306.

5. J. Kennedy, and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, CA,
2001.

6. M. Clerc. Particle Swarm Optimization. ISTE Publishing Company, London,
2006.

7. R.C. Eberhart, and Y. Shi. “Comparison Between Genetic Algorithms And
Particle Swarm Optimization”. Proceedings of IEEE International Conference
on Evolutionary Computation, 1998, pp. 611–616.

8. D.W. Boeringer, and D.H. Werner. “Particle Swarm Optimization versus Ge-
netic Algorithms for Phased Array Synthesis”. IEEE Transactions on Antennas
and Propagation, 2004, 52(3), pp. 771–779.

9. A. Abraham, H. Guo, and H. Liu. “Swarm intelligence: Foundations, Perspec-
tives And Applications”. Swarm Intelligent Systems, Nedjah N, Mourelle L
(eds.), Nova Publishers, USA, 2006.

10. J. Kennedy J and R. Mendes. “Population structure and particle swarm per-
formance”. Proceeding of IEEE conference on Evolutionary Computation, 2002,
pp. 1671–1676.

11. H. Liu, B. Li, Y. Ji and T. Sun. “Particle Swarm Optimisation from lbest
to gbest”. Applied Soft Computing Technologies: The Challenge of Complexit,
Springer Verlag, 2006, pp. 537–545.

12. Y. H. Shi and R. C. Eberhart. “Fuzzy adaptive particle swarm optimization”.
Proceedings of IEEE International Conference on Evolutionary Computation,
2001, pp. 101–106.

13. H. Liu and A. Abraham. “Fuzzy Adaptive Turbulent Particle Swarm Optimiza-
tion”. Proceedings of the Fifth International conference on Hybrid Intelligent
Systems, 2005, pp. 445–450.

16 Abraham, Liu and Zhao

14. P. Hansen and N. Mladenović N. “Variable neighbourhood search:Principles
and applications”. European Journal of Operations Research, 2001, 130, pp.
449–467.

15. P. Hansen and N. Mladenović N. “Variable neighbourhood search”. Handbook
of Metaheuristics, Dordrecht, Kluwer Academic Publishers, 2003.

16. M. Clerc, and J. Kennedy. “The Particle Swarm-explosion, Stability, and Con-
vergence in A Multidimensional Complex Space”. IEEE Transactions on Evo-
lutionary Computation, 2002, 6, pp. 58–73.

17. X. Jin and G. Min, Performance analysis of priority scheduling mechanisms
under heterogeneous network traffic Journal of Computer and System Sciences,
Volume 73, Issue 8, pp. 1207-1220, 2007.

18. F. Sabrina, C.D. Nguyen, S. Jha, D. Platt and F. Safaei, Processing resource
scheduling in programmable networks Computer Communications, Volume 28,
Issue 6, pp. 676-687, 2005.

19. L.C.A. Rodrigues, R. Carnieri and F. Neves Jr., Scheduling of continuous pro-
cesses using constraint-based search: An application to branch and bound Com-
puter Aided Chemical Engineering, Volume 10, pp. 751-756, 2002.

20. A. Abraham, H. Liu, and T.G. Chang, Variable Neighborhood Particle Swarm
Optimization Algorithm, Genetic and Evolutionary Computation Conference
(GECCO-2006), Seattle, USA, 2006.

Index

distributed data-intensive comput-
ing, 1

Multi-Start Genetic Algorithm, 9
Multi-Start Particle Swarm Opti-

mization, 9

Particle swarm algorithm, 6

Variable Neighborhood Particle Swarm
Optimization, 9

Variable Neighborhood Search, 9

