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Ahstract- the parameter estimation or identification 
problem, which frequently arises, while developing the 

mathematical models, may be formulated as a nonlinear global 

optimization problem. Here the objective is to find the set of 

parameters to minimize the function quantifying the goodness 
of the fit subject to the system dynamics. The mathematical 

model of the problem is often multimodal in nature and 
requires a suitable global optimization method for its solution. 
In the present study we show the application of a Modified 

Differential Evolution (MOE) for solving parameter estimation 

problem. We have considered two test cases. A comparison of 
numerical results with other algorithms shows the competence 

of MOE over basic DE and other methods. 

Keywords: Differential Evolution, parameter estimation, 
mathematical models, opposition-hased learning. 

I. INTRODUCTION 

MATHEMATICAL models used in applied research 
(biology, physics, economics, etc.) are often defined by a 
system of ordinary differential equations. It should be noted 
that in general the solution of such a system need not be an 
elementary function. Based on experimental data obtained, 
the parameters of the mathematical models have to be 
determined. This problem is known in literature as the 
parameter identification problem. The classical methods for 
dealing with parameter identification problem include the 
quasi-linearization method [1, 2] and smoothing the data 
method [2-4] etc. In the recent years, evolutionary 
algorithms (EA) like genetic algorithms (GA) [5, 6] have 
also been used for solving such problems. One of the main 
advantages to using these techniques is that they require no 
knowledge or gradient information about the response 
surface. In the present study, we have used Differential 
Evolution [7] and its modified version calJed Modified 
Differential Evolution (MDE) for solving parameter 
identification problem. 

DE  has emerged as  a popular choice for solving global 
optimization problems [8]. Using a few parameters, DE 
exhibits an overall excellent performance for a wide range of 
benchmark as well as real-world application problems [9] 
and has shown a better performance in comparison to other 
EA. Nevertheless, like most of the EA in their basic forms 
DE also suffers from certain drawbacks like slow and/ or 
premature convergence. While slow convergence implies 
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higher computational time, premature convergence leads to 
suboptimal solution. Therefore efforts are needed to improve 
its performance. 

MDE algorithm developed by the authors [10] is a 
simple and modified version of basic DE algorithm. It gave a 
good performance for benchmark problems in terms of 
solution quality as well as convergence rate. Motivated by 
its success, in the present study, we have used it for solving 
parameter identification problem. Two test cases are 
considered and results obtained by MDE are compared with 
basic DE and some other algorithms given in literature. 

The remainder of the paper is structured as follows. 
Introduction of parameter identification problem is given 
briefly in section II. Section III describes the algorithms 
used in this study (basic DE and MDE). Procedure to solve 
parameter identification problem is given in Section IV. 
Experimental settings are given in Section V. Numerical 
examples are listed in Section VI. Section VII provides 
comparisons of results. Finally the conclusions based on the 
present study are drawn in section VIII. 

II. PARAMETER IDENTIFICATION PROBLEM 

Let us assume that the mathematical model is defined 
either by a differential equation of the first order 

: = f(t,y(t),p) 
or a differential equation of the second order 

d2y ( , ) 
dx2 = f t,y(t),y (t),p 

(1) 

(2) 

Where P = (pJ,"',Pn)T is the vector of n unknown real 
parameters. Also given is the experimental data (t;, Yi), j= 1, . 
. . , m where ti represents the values of the independent 
variable and, Y;, the measured values of the corresponding 
dependent variable. Usually we have n«m. With the given 
data one has to estimate the optimal parameter vector, p*, 
and the optimal initial condition for the differential equation 
(1) or (2) such that 
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F(p*) = �}P F(p), F(p) = I"�l [yeti' p) - Yi r 
(3) 

where y(ti ; p) is the solution of Eq. (I) or (2). 

In this paper we shall consider the problem of 
determining the optimal parameters of a mathematical model 
defined by a differential equation of the second order. The 
initial condition of the model is generally not known. It is 
not recommended to take the first data for that purpose 
because the error it contains is not known [11]. The problem 
of finding the optimal initial condition in the mathematical 
model could be posed in the following way [1, 2]: 

Find the minimum of the functional 

(4) 

Where the function y�,v is the solution of the Cauchy 
problem 

III. ALGORITHMS 

(5) 

In this section we will describe briefly the working of 
basic differential evolution (DE) and modified differential 
evolution (MDE). 

A. Differential Evolution (DE) 

Throughout the present study we shall follow 
DE/rand/1/bin version of DE and shall refer to it as basic 
version. This particular scheme is briefly described as: 

DE starts with a population of NP candidate solutions: 
Xi,G, i = I, . . .  ,NP, where the index i denotes the ith 
individual of the population and G denotes the generation to 
which the population belongs. The three main operators of 
DE; mutation, crossover and selection are described as 
follows: 

M utation: The mutation operation of DE applies the 
vector differentials between the existing population 
members for determining both the degree and direction of 
perturbation applied to the individual subject of the mutation 
operation. The mutation process at each generation begins 
by randomly selecting three individuals Xrl,G, Xr2,G and 
Xr3,G,in the population set of (say) NP elements. The ith 
perturbed individual, V;,G I h is generated based on the three 
chosen individuals as follows: 

Vi,G�1 = Xr3,G + F * (Xrl,G - Xr2,G) (6) 

Where, i = I . . .  NP, rJ, r2, r3 E {I ... NP} are randomly 
selected such that rl ;t'= r2 ;t'= r3 ;t'= i, Xr3,G is known as the 
base vector and F is the control parameter such that F E [0, 
I). 

Crossover: once the mutant vector is generated, the 
perturbed individual, V;,G�I = (Vl,i,G�J, ... , Vn,i,G+I), and the 
current population member, X;,G= (Xl,i,a, ... , Xn,i,G), are then 
subject to the crossover operation, that finally generates the 

population of candidates, or "trial" vectors,Ui,G II = (Ul,i,G I J, . 
.. , Un,i,G+I), as follows: 

{V c' 1 if rand � C v j = k j,l.J+ j r 
Uj,iG+l = 

X
·· , otherwise },I.(J 

(7) 

Where, j = I . . .  n, k E {I, . . .  , n} is a random 
parameter's index, chosen once for each i. The crossover 
rate, Cr E [0, I], is set by the user. 

Selection: The selection scheme of DE also differs from 
that of other EAs. The population for the next generation is 
selected from the individual in current population and its 
corresponding trial vector according to the following rule: 

x _ {UiG+1 if f(U'G+l):O; f(X'G) 
I.G+l - X'G otherwise 

(8) 

Thus, each individual of the temporary (trial) population 
is compared with its counterpart in the current population. 
The one with the lower objective function value will survive 
from the tournament selection to the population of the next 
generation. As a result, all the individuals of the next 
generation are as good as or better than their counterparts in 
the current generation. In DE trial vector is not compared 
against all the individuals in the current generation, but only 
against one individual, its counterpart, in the current 
generation. 

B. M odified Differential Evolution (MDE) 

The basic operators of MDE are same as basic DE but it 
differs from it according to the following three points: 

1. Initialization phase: MDE utilizes opposition based 
learning (OBL) method while DE uses uniform random 
numbers for initialization of population. In MDE, we 
randomly construct a population P of NP individuals, 
dimension of each vector being n, using the following 
rule: 
X;J= XminJ + rand(O, l)(Xmax,rXmin), 

h Where XminJ and XmaxJ are lower and upper bound for l 
component respectively and rand(O,I) is a uniform 
random number between 0 and 1. 
We construct another population OP of NP individuals 
using the following rule: 

Yi,j = Xmin,j + Xmax,j - Pi,j 
Where PiJ are the points of population P. 
Now, construct initial population Staking NP best 
individuals from union of these two populations. 

2. M utation Phase: In mutation step MDE uses best 
individual of three points as base vector in contrast to 
basic DE where anyone of the individual is taken as base 
vector. This mutation step of MDE is performed as 
follows: 
Select randomly three distinct individuals XrJ, Xr2 and Xr3 
from population S and select the one having the best 
fitness (say Xrl,G) and denote it as X;b. Now perform 
mutation as follows: 
Vi = Xtb + F x (Xr2 - Xr3) (9) 

3. Population Set: Finally, MDE differs from DE in 
maintaining the population. While DE works on two 
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populations; current population and advanced population 
(for next generation), in MOE only one population is 
considered in which all the operations takes place. 

IV. SOLVING PARAMETER IDENTIFICATION PROBLEM 
USING DE/MOE 

In the parameter identification problem the parameters 
and initial conditions which are to be determined and 
optimized are randomly generated within the given range. 
After each iteration, the new values y (ti ; p) for each 
possible solution of P are determined using the Runge-Kutta 
method and fitness of each individual is determined using 
Equation (3). The DE/MOE then consists of the following 
steps: 

1. Initialize a popUlation of individual (possible solutions of 
p). 

2. Find the values y (ti ; p) for each individual, P, in the 
population using the Runga-Kutta method. 

3. Evaluate the fitness of each chromosome, p, in the 
population using Eq. (3). 

4. Create new offspring by using DE/MOE operators. 
5. Find the new values y (ti ; p) for each new offspring, p, 

in the population using the Runga-Kutta method. 
6. Evaluate the fitness of each new offspring, p, using Eq. 

(3) and insert them into the population. 
7. If the stopping criterion is satisfied, then stop and return 

the best individual, otherwise, go to step 4. 

V. EXPERIMENTAL SETUP 

In order to make a fair comparison we have used C++ 
rand ( ) function to generate initial population for both DE 
and MOE algorithms with same seed. The number of 
individuals in the population is taken as lO*n, where n is the 
dimension of the problem. Values of scaling factor F and 
crossover probability C are taken as 0.5 each. Both the 
algorithms are executed on a PIV PC, using DEV C++, 
thirty times for each problem. We have compared the 
algorithms taking two criteria (i) fitness and (ii) number of 
function evaluations. For fitness evaluation, the termination 
criterion is taken as maximum number of generations (100, 
300, and 500). For function evaluation termination criterion 
is II' _ I' 1< (; -10-4 Jmax Jmin - - • 

Where/max and/min are objective function values at worst 
and best point of the population. 

VI. NUMERICAL EXAMPLES 

Two test cases considered in the present study are (1) 
Enzyme effusion problem and (2) No load loss problem. 

A brief description of the problems is given here: 
1. Enzyme effusion problem [2] 

. P4 4991 ( (In(t)-Plj
l
] 

YI = ptC27.8-YI)+-(Yl -YI)+ � exp -D.5 
2.6 t'l/27r P3 

According to the Table 1, one has to estimate the 
parameter values of Ph P2, P3, P4 in addition to the initial 
condition of Yh Y2' 

2. The analytical solution of mathematical model 
containing a second order ordinary differential equation 
(ODE) can be stated by 

y(t,p) = PI exp(pi) + P2 exp(p4t) 
According to the given data (ti ,Yi), i = 1, ... ,m (see Table 
2), one has to estimate the parameter values Ph P2, P3, P4 
of the function. 

TABLE I DATA FOR ENZYME EFFUSION PROBLEM 
t YJ t YJ t YJ t YJ 

0.1 27.8 21.3 331.9 42,4 62.3 81.1 23.5 
2.5 20.0 22.9 243.5 44,4 58.7 91.1 24.8 
3.8 23.5 24.9 212.0 47.9 41.9 101.9 26.1 
7.0 63.6 26.8 164.1 53.1 40.2 115,4 33.3 

10.9 267.5 30.1 112.7 59.0 31.3 138.7 17.8 
15.0 427.8 34.1 88.1 65.1 30.0 163.2 16.8 
18.2 339.7 37.8 76.2 73.1 30.6 186.7 16.8 

VII. NUMERICAL RESULTS AND COMPARISONS 

A. Problem 1,' Enzyme effusion 

a. MDE VsDE 
Table III gives the results for problem 1 taken by fixing 

the maximum number of generation 100, 300, 500. From last 
column of this Table which gives the sum of square error 
(SSE) , we see that both algorithms give almost similar 
results. But if we run both the algorithm to achieve an 
accuracy 10-04 then MOE converge faster than DE. It finds 
out the result up to desired accuracy in lesser number of 
function evaluations and also in lesser time (Table IV). A 
performance curve is given in Figure 1. Plot of experimental 
data and data obtained by MOE after 500 generation is given 
in Figure 2. 

b. MDE Vs other algorithms given in literature 
For this comparison we ran MOE for 100, 300 and 500 

generations and the corresponding results are stored in Table 
V. From this Table it is clear that MOE outperforms all other 
algorithms. 

TABLE IV. RESULTS OBTAINED USING DE/MDE FOR ENZYME EFFUSION 
PROBLEM TO ACHIEVE THE ACCURACY 10-04 

Algorithm Time(sec) NFE I 
DE 3753 18480 l 

MDE 2407 11760 I 

2769 



Algorithm 
DE 
DE 
DE 

MOE 
MOE 
MOE 

en 
en 
Q) C .<:::: 

� 

N >-. 
-0 

c 
C<l 

...-
>-. 

Algorithm 
MOE 
MOE 
MOE 

Ref [2) 
Ref [5) 
Ref [51 
Ref [5) 
Ref [6) 
Ref [6) 
Ref [6) 

TABLE III RESULTS OBT AINED USING OEIMOE FOR ENZYME EFFUSION PROBLEM 
Pl 

23.4543 
23.2648 
23.2548 
23.2437 
23.2543 
23.2543 

25000 

20000 

15000 

10000 

5000 

0 

120 

450 
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350 

300 

250 

200 

150 

100 

50 

0 

P2 P3 P4 Yl Y2 Gen 
37.3712 0.272592 2.65286 0.364299 0.206415 100 
37.0019 0.272790 2.65350 0.364828 0.209529 300 
37.0000 0.272819 2.65363 0.364895 0.209288 500 
37.0013 0.272873 2.65371 0.364971 0.209080 100 
37.0000 0.272819 2.65363 0.364895 0.209285 300 
37.0000 0.272819 2.65363 0.364895 0.209285 500 

�OE 

�MOE 

620 1120 1620 2120 2620 

No of function evauation 

Fig 1: performance curves of Enzyme effusion problem. 

�Yl Eexperimental 

�yl Model by MOE 

-Ir-y2 model by MOE 

SSE 
4048.69 
4044.50 
4044.48 
4044.49 
4044.48 
4044.48 

0 50 100 

t 

150 200 

Fig 2: Enzyme effusion model at 500 generation. 

TABLE V COMPARISON OF ENZYME EFFUSION RESULTS BY MOE WITH OTHER ALGORITHMS 
Pl P2 Pl P4 Yl Y2 Gen SSE 

23.2437 37.0013 0.272873 2.65371 0.364971 0.209080 100 4044.49 
23.2543 37.0000 0.272819 2.65363 0.364895 0.209285 300 4044.48 
23.2543 37.0000 0.272819 2.65363 0.364895 0.209285 500 4044.48 
0.31900 2.70100 0.41900 0.10310 22.00000 39.00000 -- 5076.60 
0.31938 2.70104 0.38920 0.07819 21.00000 38.75000 100 5229.73 
0.30501 2.69865 0.40052 0.11663 22.02000 39.44000 200 4547.34 
0.28452 2.67169 0.39268 0.16144 23.99000 40.14000 500 4068.38 
0.24540 2.60920 0.33260 0.32170 22.00500 38.60800 100 4431.45 
0.25610 2.62690 0.34490 0.26960 22.04300 38.40300 200 4193.92 
0.26190 2.63360 0.35240 0.25750 21.98600 38.70400 300 4136.73 
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B. Problem 2 

a. MDE VsDE 
Table VI gives the results for problem 2 taken by 

fixing the maximum number of generation 100, 300, 500. 
From last column of this Table which gives the sum of 
square error (SSE) that both algorithm gives almost 
similar results. But if we run both the algorithm to achieve 
an accuracy 10-04 then it can be seen that MDE converge 
faster than DE. It finds out the result up to desired 
accuracy in lesser number of function evaluations and 
computational time (Table VII). A performance curve is 
given in Figure 3. Plot of experimental data and data 
obtained by MDE after 500 generation is given in Figure 
4. 

b. MDE Vs other algorithms given in literature 
We compared the performance of MDE with the 

results available in literature where it has been solved 
using Genetic Algorithm (GA). For this comparison we 
executed MDE for 100, 300 and 500 generation and 
stored the results in Table VIII. From this table it can be 
clearly observed that MDE outperforms the other 
algorithms. 

TABLE VII. RESULTS OBTAINED USING DE/MOE FOR PROBLEM 2 TO 
ACHIEVE THE ACCURACY 10-04 

I Algorithm Time(Sec) NFE I 
I DE 030 13564 I 
I MOE 0.10 8472 I 

TABLE VI RESULTS OBTAINED USING DEIMDE FOR PROBLEM 2 
Algorithm Pl p] P3 P4 Gen SSE 

DE 36.0250 38.1356 0.693334 -0.189512 100 0.325970 
DE 34.1450 39.9841 0.715547 -0.170192 300 0.296257 
DE 34.1266 40.0000 0.715740 -0.169867 500 0.296017 

MOE 35.4350 38.6848 0.698735 -0.182301 100 0314189 
MOE 34.1266 40.0000 0.715740 -0.169867 300 0.296017 
MOE 34.1266 40.0000 0.715740 -0.169867 500 0.296017 

100 

90 

80 �DE 

70 

en 60 
-*-MDE 

en 
Q) 

50 s:: 
. ...: 
\.1... 40 

30 

20 

10 

0 

80 580 1080 1580 2080 2580 3080 

No of function evaluation 

Fig 3: performance curves of problem 2. 
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Fig 4: y Vs t of problem 2 at 500 generation. 

TABLE VIII COMPARISON OF PROBLEM 2 RESULTS BY MOE WITH OTHER ALGORITHMS 
Algorithm PI P2 P3 

MOE 35.4350 38.6848 0.698735 
MOE 34.1266 40.0000 0.715740 
MOE 34.1266 40.0000 0.715740 

Ref (2] 43.9805 30.1752 0.60735 
Ref. [51 43.2233 30.8774 0.6170 
Ref. (5] 40.8112 33.3234 0.6400 
Ref [5] 37.7414 36.3533 0.6753 
Ref [6] 42.5032 31.5469 0.6265 
Ref. (6] 41.4371 32.6713 0.6346 

VIII. DISCUSSION AND CONCLUSIONS 

In this paper we have investigated the performance of 
DE and MOE, a modified version of DE for solving 
parameter identification problem. The simulation of results 
showed that MDE is quite competent for solving such 
problems in lesser number of function evaluations and time 
without compromising with the quality of solution. 
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