
13

Pharmaceutical Drug Design Using Dynamic
Connectionist Ensemble Networks

Ajith Abraham1, Crina Grosan2 and Stefan Tigan3

1 Norwegian Center of Excellence, Center of Excellence for Quantifiable Quality of Service,
Norwegian University of Science and Technology, O.S. Bragstads plass 2E, Trondheim,
Norway
ajith.abraham@ieee.org

2 Department of Computer Science, Babes-Bolyai University, Cluj-Napoca, 3400, Romania
cgrosan@cs.ubbcluj.ro

3 University Iuliu Hatieganu, Faculty of Medicine, Department of Biostatistics and Medical
Informatics, Cluj-Napoca, Romania
stigan@umfcluj.ro

Summary. This article presents a dynamic ensemble neural network model for a pharma-
ceutical drug design problem. Designing drugs is a current problem in the pharmaceutical
research domain. By designing a drug, we mean to choose some variables of drug formulation
(inputs), for obtaining optimal characteristics of drug (outputs). To solve such a problem, we
propose a dynamic ensemble neural network model and the performance is compared with
several neural network architectures and learning approaches. The idea is to build a dynamic
ensemble neural network depicting the dependence between inputs and outputs for the drug
design problem. Bootstrap techniques were used to generate more samples of data since the
number of experimental data is reduced due to the costs and time durations of experimenta-
tions. We obtain in this way a better estimation of some drug parameters. Experiment results
indicate that the proposed method is efficient.

13.1 Introduction

This article presents a dynamic neural network ensemble for modeling the situations
that interfere in the process of designing drugs. By designing a drug, we mean to
choose some variables of drug formulation, for obtaining optimal characteristics of
drug [2, 3]. Our application is made on a particular class of drugs, namely retard
drugs. We approach this problem with a bootstrap simulation which is suitable in
some particular situations [1, 4].

The problem comes from the pharmaceutical research activity. It refers to a spe-
cific class of drugs that has delayed action called generically retard drugs. The
pharmaceutical experimental situation leads to a mathematical optimization prob-
lem [12, 14, 15]. The pharmacist researcher must take into account several variables

A. Abraham et al.: Pharmaceutical Drug Design Using Dynamic Connectionist Ensemble Networks, Studies in Compu-
tational Intelligence (SCI) 123, 221–231 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

222 A. Abraham et al.

Table 13.1. Sample data showing the inputs and outputs

Variables of formulation: Inputs Responses: Outputs
ExpNo X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 Y6

1 20 2 3 5 1 84.0 973.8 4.2 1.043 7.85 1.165
2 40 2 3 0 0 71.9 1150.0 1.6 1.016 8.2 2.264
3 20 8 3 0 1 92.5 1121.4 4.2 1.044 8.83 0.700
4 40 8 3 5 0 88.1 1200.0 3.7 1.038 8.87 1.205
5 20 2 9 5 0 99.2 910.0 5.8 1.061 8.3 1.914
6 40 2 9 0 1 68.2 985.1 4.1 1.043 7.9 2.550
7 20 8 9 0 0 99.1 1010.0 5.3 1.056 9.05 1.160
8 40 8 9 5 1 83.9 925.4 5.5 1.058 8.5 1.265
9 30 5 6 2.5 0.5 85.0 1055.8 3.8 1.036 8.3 1.535
10 30 5 6 2.5 0.5 81.2 1030.0 4.1 1.042 8.37 1.490
11 30 5 6 2.5 0.5 85.0 1060.0 4.1 1.042 8.4 1.535

of formulation of the drug such as: the speed of mixing turbine, the concentration of
the binder, addition speed, the proportion of talc, the proportion of lauril sulfate Na.

We name these variables inputs and denoted as Xi, i = 1, n. For the problem
considered, we have five inputs, X1, X2, X3, X4 and X5. With those variables of
formulation, for each combination taken into account, the researcher obtains a vari-
ant of drug with certain characteristics. For each obtained variant, some parameters
are measured, called responses that characterizes the drug: charging performance,
average diameter of the pill, Carr value, Hausner value, the flow time and the brit-
tleness. We consider these responses as outputs denoted by Yj , j = 1,m. For our
problem, we have 6 outputs denoted by Y1, Y2, Y3, Y4, Y5 andY6.

The costs of experimentations are high and it is necessary to devote a long time
to determine all responses for each variant of drug. So, the research group realized
only 11 experiments. With the formalization proposed above, we grouped the exper-
imental data as depicted in Table 13.1.

The aim is to determine a combination of variables (x1, x2, ..., x5) such that the
responses (y1, y2, ..., y6) are optimal. By optimal we mean that outputs respect some
conditions and also by taking into account some restraints for outputs.

1. The first response, output Y1, must be maximized, so the goal is to obtain a value
as close as possible to 100 %.

2. Te second output Y2 must not outrun some values determined by the fact it is a
value representing tablet’s diameter. So, the requirement is that y2 ∈ [800µm,
1000µm]. A value around the average 900µm is suitable.

3. The third output Y3 has also an admissible interval for its value, [1, 20], but we
must determine it as close as possible to 1.

4. The fourth response, output Y4, has a narrower interval for its values, [1, 1.2],
but it also has to be closest to 1.

5. The fifth output Y5, representing a time quantity, must be as small as possible,
but positive.

6. For the last output Y6, the goal is to minimize it, with positive values, so the 0
value is considered desirable.

13 Pharmaceutical Drug Design 223

We search for the values of Xi i = 1, 5 for which we obtain a drug formulation
with optimal characteristics Yj j = 1, 6. Variables are chosen by the researcher from
a continuous domain. Not all values are accepted. So we must consider domains
of definition, real intervals, for each input variable. Accepted variation intervals for
inputs, for our problem, are: X1 ∈[0,50], X2 ∈[1,8], X3 ∈[3,9], X4 ∈[0,5], and
X5 ∈[0,1].

13.2 Dynamic Ensemble of Neural Networks

Consider a population of n networks trained on a set A = (xm,ym) of labeled in-
stances of a binary classification problem. A simple approach to combining network
outputs is to simply average them together [11, 13, 16]. The basic ensemble method
(BEM) output is defined by:

fBEM =
1
n

n∑
i=1

fi(x) (13.1)

This approach can lead to improved performance, but does not take into account
the fact that some networks may be more accurate than others. It has the advantage
of being easy to understand and implement and can be shown not to increase the
expected error. A generalization to the BEM method is to find weights for each output
that minimizes the mean squared error (MSE) of the ensemble. The general ensemble
model (GEM) is defined by:

fGEM =
n∑

i=1

αifi(x) (13.2)

where αi is chosen to minimize the MSE with respect to the target function, f (es-
timated using the cross validation set), and sum to 1. Define the error, εi(x), of a
network, fi, as:

εi(x) = f(x) − fi(x) (13.3)

If the correlation matrix, Cij = E[εi(x) ej(x)], then the task is to find weights
that minimize the following:

MSE[fGEM] =
n∑

i=1

n∑
j=1

αiαjCij (13.4)

It is shown that the optimal choice could be derived as follows:

αi =

n∑
j=1

C−1
ij

n∑
k=1

n∑
j=1

C−1
kj

(13.5)

The performance of GEM depends on a reliable estimate of C and the fact that
it is non-singular so that it can be easily inverted. In practice, errors are often highly
correlated, thus, the rows of C are nearly linearly dependent so that inverting C leads
to significant round-off errors.

224 A. Abraham et al.

If the output of a neural network, y = fi (x), can be interpreted as the probability
that an instance, x, is in a class, then, as y approaches 1, we feel more certain that the
instance is in the class. As y approaches 0, we become more certain that the instance
is not in the class. To quantify this notion; we define the certainty, c(y), of a neural
network output as:

c(y) =
{

y if y ≥ 0.5
1 − y otherwise

(13.6)

The certainty rises for output y less than 0.5 as y falls, and for outputs y ≥0.5
as y rises. It is possible to depict that one network output, y1,is less certain than
another, y2, if c(y1) is less than c(y2). Note that the certainty behaves symmetrically
with respect to positive and negative decisions; the certainty of an output of 0.1 is the
same as that of an output of 0.9, but the decision they are certain about is different.

In a dynamic ensemble network (DEN), instead of choosing static weights de-
rived from fi performance on a sample of the input space, the weights are adjusted
proportional to the certainties of the respective network outputs [6, 7]. The dynami-
cally averaged network (DAN) is defined as:

fDAN =
n∑

i=1

wifi(x) (13.7)

where wi = c(fi(x))
n∑

i=1
c(fi(x))

and
n∑

i=1

wi = 1

The weight vector is calculated each time the ensemble output is evaluated, to
try to give the best decision for the particular instance under consideration, instead
of statically choosing weights that give an optimal decision with respect to a cross
validation set. Each network’s contribution to the sum is proportional to its certainty.
A value close to 0.5, for instance, would contribute very little to the sum while a very
certain value of 0.99 (or 0.01) among many less certain values would dominate the
sum. Each fully connected neural network in the ensemble is generated with random
initial weights. Then, each neural network is trained partially with training data and
tested with the validation data.

13.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) were designed to mimic the characteristics of the
biological neurons in the human brain and nervous system. An artificial neural net-
work creates a model of neurons and the connections between them, and trains it
to associate output neurons with input neurons. The network learns by adjusting the
interconnections (called weights) between layers. When the network is adequately
trained, it is able to generate relevant output for a set of input data. A valuable prop-
erty of neural networks is that of generalization, whereby a trained neural network is
able to provide a correct matching in the form of output data for a set of previously
unseen input data.

13 Pharmaceutical Drug Design 225

Multi-Layered Perceptron Networks (MLPN)

Typical MLPN is arranged in layers of neurons (nodes), where every neuron in a
layer computes the sum of its inputs and passes this sum through a nonlinear function
(an activation function) as its output. Each neuron has only one output, but this output
is multiplied by a weighting factor if it is to be used as an input to another neuron (in
a next higher layer). There are no connections among neurons in the same layer.

Activation functions for the hidden layers are required to introduce nonlinearity
into the network. Without nonlinearity, hidden layers would not make networks more
powerful. The training of a network by backpropagation (BP) involves three stages:
the forward propagation of the input training pattern(s), the calculation and back-
propagation of the associated error, and the adjustment of the weights. After training,
application of the network involves only the computation of the feedforward phase.

Basically, BP is a gradient descent technique to minimize the error E for a par-
ticular training pattern. For adjusting the weight (wk),in the batched mode variant
the descent is based on the gradient �E(δE

δwk
) for the total training set:

�wk(n) = −ε · δE

δwk
+ �wk(n − 1) (13.8)

The gradient gives the direction of error E. The parameters ε and α are the learn-
ing rate and momentum respectively. A good choice of both the parameters is re-
quired for training success and speed of the ANN.

In the conjugate gradient algorithm (CGA) a search is performed along conjugate
directions, which produces generally faster convergence than steepest descent direc-
tions. A search is made along the conjugate gradient direction to determine the step
size, which will minimize the performance function along that line. A line search is
performed to determine the optimal distance to move along the current search direc-
tion. Then the next search direction is determined so that it is conjugate to previous
search direction. The general procedure for determining the new search direction is
to combine the new steepest descent direction with the previous search direction.
An important feature of the CGA is that the minimization performed in one step is
not partially undone by the next, as it is the case with gradient descent methods. An
important drawback of CGA is the requirement of a line search, which is compu-
tationally expensive. Moller [5] introduced the scaled conjugate gradient algorithm
(SCGA) as a way of avoiding the complicated line search procedure of conventional
CGA. According to the SCGA, the Hessian matrix is approximated by:

E′′(wk)pk =
E′(wk + σkpk) − E′(wk)

σk
+ λkpk (13.9)

where E′ and E′′ are the first and second derivative information of global error
function E(wk). The other terms pk, σk and λk represent the weights, search direc-
tion, parameter controlling the change in weight for second derivative approximation
and parameter for regulating the indefiniteness of the Hessian. In order to get a good

226 A. Abraham et al.

quadratic approximation of E, a mechanism to raise and lower λk is needed when
the Hessian is positive definite. Detailed step-by-step description can be found in the
literature [5]. We used the MLPN trained using SCGA.

Elman Recurrent Neural Networks (ERNN)

ERNN, also known as partially recurrent neural network, are a subclass of recurrent
networks [9]. They are multilayer perceptron networks augmented with one or more
additional context layers storing output values of one of the layers delayed by one
step and used for activating this or some other layer in the next time step. The ERNN
has context units, which store delayed hidden layer values and present these as addi-
tional inputs to the network. The ERNN can learn sequences that cannot be learned
with other recurrent neural network e.g. with Jordan recurrent neural network, since
networks with only output memory cannot recall inputs that are not reflected in the
output. Several training algorithms for calculation of error gradient in general recur-
rent networks exist. Usually, both hidden and output units have nonlinear activation
functions. Note that external input at time t does not influence the output of any unit
until time t + 1. The network is thus a discrete dynamical system.

Radial Basis Function Network (RBFN)

RBFN network consists of 3-layers: input layer, hidden layer, and output layer. The
neurons in hidden layer are of local response to its input and known as RBF neurons,
while the neurons of the output layer only sum their inputs and are called linear neu-
rons. It is well known that neural network training can result in producing weights in
undesirable local minima of the criterion function [10]. This problem is particularly
serious in recurrent neural networks as well as for MLPN with highly nonlinear acti-
vation functions, because of their highly nonlinear structure, and it gets worse as the
network size increases. This difficulty has motivated many researchers to search for
a structure where the output dependence on network weights is less nonlinear. The
RBFN has a linear dependence on the output layer weights, and the nonlinearity is
introduced only by the cost function for training, which helps to address the problem
of local minima. There are two basic methods to train an RBFN in the context of
neural networks. One is to jointly optimize all parameters of the network similarly
to the training of the MLPN. This method usually results in good quality of approx-
imation but also has some drawbacks such as a large amount of computation and
a large number of adjustable parameters. Another method is to divide the learning
of an RBFN into two steps. The first step is to select all the centers µ in terms of
an unsupervised clustering algorithm such as the K-means algorithm proposed by
Linde et al., and choose the radii σ by the k-nearest neighbor rule. The second step
is to update the weights B of the output layer, while keeping the µ and σ fixed. The
two-step algorithm has fast convergence rate and small computational burden. We
used a two-step learning algorithm to speed up the learning process of the RBFN.

13 Pharmaceutical Drug Design 227

The selection of the centers and radii of RBF neurons can be done naturally in an un-
supervised manner, which makes this structure intrinsically well suited for weather
prediction. As a result, we adopt below a self-organized learning algorithm for selec-
tion of the centers and radii of the RBF in the hidden layer, and a stochastic gradient
descent of the contrast function for updating the weights in the output layer. For the
selection of the centers of the hidden units, we may use the standard k-means clus-
tering algorithm. This algorithm classifies an input vector x by assigning it the label
most frequently represented among the k-nearest neighbor samples. Specifically, it
places the centers of RBF neurons in only those regions of the input space, where
significant data are present. Once the centers and radii are established, we can make
use of the minimization of the contrast function to update the weights of the RBFN.

Hopfield Model

This network is a single layer network with symmetric weight matrices in which the
diagonal elements are all zero. The diagonal elements need not be zero, but we as-
sume that is the case since the performance is improved when taken to be zero. Thus,
for a Hopfield network with weight matrix W , wij = wji and wii = 0 for all i, j = 1,
2, . . . , n. Inputs are applied simultaneously to all neurons, which then output to each
other and the process continues until a stable state is reached, which represents the
network output. The feedback loops involve the use of particular branches composed
of unit-delay elements (denoted by z−1), which result in a nonlinear dynamical be-
havior by virtue of the nonlinear nature of the neurons.

13.2.2 Ensemble of Neural Networks

Figure 13.1 represents the architecture of the ensemble neural network [13]. The
ensemble is formulated using combinations of MLPN, ERNN, RBFN and HFM ar-
chitectures using the dynamic ensemble network strategy discussed above.

Fig 13.1. Dynamic ensemble architecture

228 A. Abraham et al.

13.3 Experiment Setup and Results

In this kind of pharmaceutical drug design problem, the researcher has to deal with
two major aspects of the experimentation:

1. The relation between inputs and outputs is unknown, so we must find a way to
make the best approximation

2. Data are difficult to obtain due to the restraints of costs and time. So, a method
to simulate similar data is desirable

13.3.1 Bootstrap Re-sampling of Data

If the proposed solution is not acceptable or the system developed is not compatible
and the process of evaluating an optimal solution is not convergent, we can conclude
that the sample of data is too poor and the regression functions are not suitable to
describe the links between variables. We resort, in this case, to a resampling method
that allow us to manage uncertainty. The aim is to improve our sample of data with
pseudo data and to evaluate some statistical parameters. We use a bootstrap method
of resampling data. We group each input variable of formulation Xi, i = 1, 5 with
each output Yj , j = 1, 6. We obtain 30 vectors with bivariate data (Xi, Yj). For
those vectors we apply a bivariate bootstrap resampling procedure. Finally, among
the bootstrap simulated sets of Xi variables we select a combination of inputs, a set
of values xi, i = 1, 5, that correspond to best situated values of Yj . We mean by this
to observe the resampling process of (Xi, Yj) and select a proper combination of yj ,
j = 1, 6. In our application a such a combination is

(y1 = 99.1, y2 = 910, y3 = 1.6, y4 = 1.036, y5 = 7.85, y6 = 0.7)

We look in the bivariate bootstrap resampling process and extract the input combina-
tion (x1, x2, x3, x4, x5) for which we obtain the above combination of yj , j = 1, 6.

From other point of view, such a resampling method is useful to obtain new data
and to improve the function approximation of the dependence y = f(X). So, we can
say that no matter what method we choose to approach such a problem, resampling
bootstrap methods are desirable to improve the accuracy of data sets.

The experimental system consists of two stages: modeling the different neural
network models (and constructing the ensemble) and performance evaluation. 70%
of the data was used to train the different network models and the ensemble and 30%
for testing purposes. Experiments were repeated three times and the worst errors
are reported. The test data is then passed through the trained models to evaluate the
learning efficiency of the considered models.

All the data were transformed into values between -1 and 1. The main goal of this
scaling, in combination with weight initialization, is to allow the squashed activity
function to work at least at the beginning of the learning phase. Thus, the gradient,
which is a function of the derivative of the non-linearity, will always be different
from zero. At the end of each algorithm, the outputs were re-scaled into the original
data format for achieving the desired result.

13 Pharmaceutical Drug Design 229

Table 13.2. Test results and performance comparison of drug design system

Output Y1 Y2 Y3 Y4 Y5 Y6

MLPN
RMSE 0.0487 0.039 0.043 0.040 0.038 0.039
CC 0.979 0.968 0.967 0.956 0.966 0.975
RBFN
RMSE 0.0322 0.0391 0.0390 0.0421 0.0412 0.0381
CC 0.972 0.981 0.972 0.964 0.956 0.973
ERNN
RMSE 0.0532 0.0456 0.0489 0.0534 0.0456 0.0453
CC 0.954 0.956 0.966 0.945 0.946 0.947
HFM
RMSE 0.0675 0.0756 0.0453 0.0563 0.0645 0.0756
CC 0.923 0.091 0.0967 0.0961 0.0933 0.0921
Dynamic Ensemble Network
RMSE 0.0192 0.0223 0.0213 0.0310 0.0202 0.0276
CC 0.988 0.991 0.987 0.976 0.978 0.983

The configuration of the neural network depends highly on the problem. To de-
cide on the architectures of the MLPN, ERNN and HFM, a trial and error approach
was used. Networks were trained for a fixed number of epochs, and the error gradi-
ent was observed over these epochs. Performance of the MLPN, ERNN and HFM
networks were evaluated by increasing or decreasing the number of hidden nodes.
The activation functions for the MLPN and ERNN models were chosen to be log-
sigmoid and hyperbolic-tangent-sigmoid for hidden units, respectively, and linear for
the output units.

Since there is no exact rule for fixing the number of hidden neurons and hid-
den layers to avoid under-fitting or over-fitting in the MLPN and ERNN networks,
therefore, the RBFN model is investigated to address this difficulty. In RBFN, the
Gaussian activation function was chosen for the hidden units, and linear for the out-
put units.

The obtained results indicate that satisfactory accuracy has been achieved using
the MLPN, ERNN, HFM and RBFN models. The performance is evaluated using
root mean squared error (RMSE) and correlation coefficient (CC).

Compared to the HFM performance, MLPN exhibited lower errors. It is capa-
ble of modeling the problem considered better than HFM. However, the learning
process of the MLPN algorithm is time-consuming and its performance is heav-
ily dependent on the network learning parameters. The ERNN model, compared to
MLPN, could efficiently capture the dynamics of the model, resulting in a more com-
pact and natural representation of the temporal information contained in the data.
The RMSE of the ERNN model was much lower than that of the HFM method. The
RBFN performed well in terms of accuracy. Since RBFN has unsupervised learn-
ing characteristics and a modular network structure, these properties make it more
effective for fast and robust problem modeling. It is indicated that the HFM model

230 A. Abraham et al.

overestimated most of the predicted values. Overall, the performance of HFM is
reasonable. However, compared to the other models, it is less accurate for the drug
design problem.

The optimal network is the one that has a lower error and the highest correlation
coefficient. The experimental comparisons of the MLPN, ERNN, RBFN and HFM
methods pointed out that no single algorithm can be regarded as the best to model all
variables. Thus, the use of ensemble of neural networks as an alternative approach
is considered and the empirical performance clearly illustrates the importance of
the approach. Dynamic ensemble-averaging tends to cancel out the noise part as it
varies among the different ensemble members, and tends to retain the fitting of the
regularities of the data.

13.4 Conclusions

This article introduced a dynamic ensemble neural network model for a pharmaceu-
tical drug design problem. Test results reveal that the proposed connectionist models
are capable of modeling all the outputs accurately. Compared to the different arti-
ficial neural network approaches, the dynamic ensemble model performed better in
terms of RMSE and correlation coefficient values.

Performance could have been improved by providing more training data. The
most important achievement of this result is that it gives to the researcher a new
starting point of experimentation in stead of making other 20 - 30 experiments and
to arrive to the same conclusion as the ensemble model recommends.

Acknowledgements

Authors would also like to thank the colleagues of the Department of Maxillofacial
Surgery, University of Medicine and Pharmacy, Iuliu Hatieganu Cluj-Napoca, for the
initial contributions of this research.

References

1. Abdelhak M. Zoubir, D. Robert Iskander, (1998), Bootstrap MATLAB Toolbox, Software
Reference Manual.

2. Remus Câmpean, A. Prodan, (2003), Biomatematicǎ – aplicatii ı̂n Excel, Editura
Medicalǎ Universitarǎ “Iuliu Hatieganu”, Cluj-Napoca, ISBN: 973-693-016-5.

3. Remus Câmpean, Augustin Prodan, (2003) A Rating Model Applied for Designing Drugs,
Proceedings of the 12-th IASTED International Conference on Applied Simulation and
Modelling, Marbella, Spain, pg 557-561, ACTA press, ISBN: 0-88986-384-9, ISSN:
1021-8181

4. T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, R. Epstein, (1993), Bootstrap
Methods and Permutation Tests, W. H. Freeman and Company, New York, 2003

13 Pharmaceutical Drug Design 231

5. Moller, A. F., A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,
Neural Networks. 6:525-533.

6. Hansen LK, Salamon P. (1990), Neural network ensembles. IEEE Transactions on Pattern
Analysis 12(10):993-1001.

7. Jimenez D, Walsh N (1998) Dynamically weighted ensemble neural networks for
classi.cation. In: Proceedings of the international joint conference on neural networks
(IJCNN98), Anchorage, Alaska, May 1998, pp 753-756.

8. Sharkey AJC (1999) Combining artificial neural nets: ensemble and modular multi-net
systems. Springer, Berlin Heidelberg New York.

9. Elman J.L. (1991), Distributed representations, simple recurrent networks and grammati-
cal structure, Machine Learning, Vol. 7, No. 2/3, pp. 195-226.

10. Orr, M. J.(1995), “Regularization in the selection of radial basis function centers”, Neural
Computation, Vol. 7, No. 3, pp. 606-623.

11. Maqsood I, Khan MR and Abraham, A. (2004), Neural Network Ensemble Method for
Weather Forecasting, Neural Computing & Applications, Springer Verlag London Ltd.,
Volume 13, No. 2, pp. 112-122.

12. Abraham, A., Grosan C. and Tigan S. (2007), Ensemble of Hybrid Neural Network Learn-
ing Approaches for Designing Pharmaceutical Drugs, Neural Computing & Applications,
Springer Verlag London Ltd., Volume 16, No. 3. pp. 307-316.

13. Maqsood I and Abraham, A. (2007), Weather Analysis Using an Ensemble of Connec-
tionist Learning Paradigms, Applied Soft Computing Journal, Elsevier Science, Volume
7, Issue 3, pp. 995-1004.

14. Grosan C., Abraham, A. and Tigan S.(2006), Engineering Drug Design Using a Multi-
Input Multi-Output Neuro-Fuzzy System, 8th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC’06), Timisoara, Romania, IEEE
CS Press, pp. 365-371.

15. Grosan C., Abraham, A., Tigan S., Chang TG and Kim, DH (2006), Evolving Neural
Networks for Pharmaceutical Research, International Conference on Hybrid Information
Technology (ICHIT’06), IEEE Press, Korea, pp. 13-19.

16. Maqsood I, Khan MR and Abraham, A. (2004), Neural Network Ensemble Method for
Weather Forecasting, Neural Computing and Applications, Springer Verlag London Ltd.,
Volume 13, No. 2, pp. 112-122.

