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ABSTRACT
This paper proposes a new perspective for solving systems of
nonlinear equations. A system of equations can be viewed as
a multiobjective optimization problem: every equation rep-
resents an objective function whose goal is to minimize dif-
ference between the right and left term of the corresponding
equation in the system. We used an evolutionary computa-
tion technique to solve the problem obtained by transform-
ing the system of nonlinear equations into a multiobjective
problem. Results obtained are compared with a very new
technique [10] and also some standard techniques used for
solving nonlinear equation systems. Empirical results illus-
trate that the proposed method is efficient.

1. INTRODUCTION
A nonlinear system of equations is defined as:

f(x) =

26664
f1(x)
f2(x)
...
fn(x)

37775 .

x = (x1, x2, . . . , xn), refers to n equations and n variables;
where f1, . . . , fn are nonlinear functions in the space of all

real valued continuous functions on Ω =
nQ

i=1

[ai, bi] ⊂ <n.

Some of the equations can be linear, but not all of them.
Finding a solution for a nonlinear system of equations f(x)
involves finding a solution such that every equation in the
nonlinear system is 0:

(P )

8>>><>>>:
f1(x1, x2, ..., xn) = 0
f2(x1, x2, ..., xn) = 0
...
fn(x1, x2, ..., xn) = 0

(1)

In Figure 1 the solution for a system having two nonlinear
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equations is depicted.

Figure 1: Example of solution in the case of a two
nonlinear equation system represented by f1 and f2.

There are also situations when a system of equations is
having multiple solutions. For instance, the system:8>><>>:

f1(x1, x2, x3, x4) = x2
1 + 2x2

2 + cos(x3)− x2
4 = 0

f1(x1, x2, x3, x4) = 3x2
1 + x2

2 + sin2(x3)− x2
4 = 0

f1(x1, x2, x3, x4) = −2x2
1 − x2

2 − cos(x3) + x2
4 = 0

f1(x1, x2, x3, x4) = −x2
1 − x2

2 − cos2(x3) + x2
4 = 0

is having two solutions: (1, -1, 0, 2) and (-1, 1, 0, -2). The
assumption is that a zero, or root, of the system exists. The
solutions we are looking for are those points (if any) that
are common to the zero contours of fi, i = 1, ..., n.

There are several ways to solve nonlinear equation systems
([1], [5]-[9], [13]). Probably, the most popular techniques are
the Newton type techniques. Other techniques are:

• Trust-region method [3];

• Broyden method [2];

• Secant method [12];

• Halley method [4].



Newton’s method
We can approximate f using the first order Taylor expan-

sion in a neighborhood of a point xk ∈ <n. The Jacobian
matrix J(xk) ⊂ <nxn to f(x) evaluated at xk is given by:

J =

2664
δf1
δx1

... δf1
δxn

...
...

δfn
δx1

... δfn
δxn

3775
Then:

f(xk + t) = f(xk) + J(xk)t + O(||p||2).
By setting the right side of the equation to zero and ne-

glecting terms of higher order (except the first) (O(||p||2))
we obtain:

J(xk)t = −f(xk).

Then, the Newton algorithm is described as follows:

: Algorithm1: Newton algorithm
Set k=0

Guess an approximate solution x0.
Repeat

Compute J(xk) and f(xk).
Solve the linear system J(xk)t = −f(xk).
Set xk+1 = xk + t.
Set t = t + 1.

Until converged to the solution
The index k is an iteration index and xk is the vector x

after k iterations.
The idea of the method is to start with a value which is

reasonably close to the true zero, then replace the function
by its tangent and computes the zero of this tangent. This
zero of the tangent will typically be a better approximation
to the function’s zero, and the method can be iterated.

Remarks

1. This algorithm is also known as Newton-Raphson method.
There are also several other Newton methods.

2. The algorithm converges fast to the solution.

3. It is very important to have a good starting value (the
success of the algorithm depends on this).

4. The Jacobian matrix is needed but in many problems
analytical derivatives are unavailable.

5. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be
prohibitive.

Effati’s method
In [10], Effati and Nazemi proposed a new method for

solving systems of nonlinear equations. The method pro-
posed in [10] is presented below.

The following notations are used:
xi(k + 1) = fi(x1(k), x2(k), ..., xn(k));

f(xk) = (f1(xk), f2(xk), ..., fn(xk));
i = 1, 2..., n and xi : N → <.

If there exist a t such that x(t) = 0 then fi(x(t − 1)) =
0, i = 1, ..., n. This involves that x(t−1) is an exact solution
for the given system of equations.

Define:
u(k) = (u1(k), u2(k), ..., un(k)).

x(k + 1) = u(k)
Define f0 : Ω×U → < (Ω andU are compact subsets of<n):
f0(x(k), u(k)) = ‖u(k)− f(x(k))‖22.
The error function E is defined as follows:

E[xt, ut] =
t−1P
k=0

f0(x(k), u(k)).

xt = (x(1), x(2), ..., x(t− 1), 0)
ut(u(1), u(2), ..., u(t− 1), 0).

Consider the following problem:

(P1)

8>>>><>>>>:
minimize E[xt, ut] =

t−1P
k=0

f0(x(k), u(k))

subject to
x(k + 1) = u(k)
x(0) = 0, x(t) = 0, (x0 is known)

In the theorem illustrated by Effati and Nazemi [10] if
there is an optimal solution for the problem P1 such that
the value of E will be zero, then this is also a solution for
the system of equations to be solved.

The problem is transformed to a measure theory problem.
By solving the transformed problem ut is first constructed.
From there, xt could be obtained (see for details [10]). The
measure theory method is improved in [10]. The interval
[1, t] is divided into the subintervals S1 = [1, t− 1] and S2 =
[t− 1, t]. The problem P1 is solved in both subintervals and
two errors E1 and E2 respectively are obtained. This way,
an upper bound for the total error is found. If this upper
bound is estimated to be zero then an approximate solution
for the problem is found.

2. PROBLEM TRANSFORMATION
This section explains how the problem is transformed to a

multiobjective optimization problem. First, the basic defin-
itions of a multiobjective optimization problem is presented
and what it denotes an optimal solution for this problem
[15].

Let Ω be the search space. Consider n objective functions
f1, f2. . . fn ,

fi : Ω → < , i = 1, 2, . . . , n
where Ω ⊂ <m.
The multiobjective optimization problem is defined as:8<: optimize f(x) = (f1(x), ..., fn(x))

subject to
x = (x1, x2, . . . xm) ∈ Ω.

For deciding wether a solution is better than another so-
lution or not, the following relationship between solutions
might be used:

Definition 1. (Pareto dominance)
Consider a maximization problem. Let x, y be two decision
vectors (solutions) from Ω.
Solution x dominate y (also written as x Â y) if and only if
the following conditions are fulfilled:

(i) fi(x) ≥ fi(y), ∀i = 1, 2, . . . , n,

(ii) ∃j ∈ {1, 2, . . . , n}: fj(x) > fj(y).

That is, a feasible vector x is Pareto optimal if no feasi-
ble vector y can increase some criterion without causing a
simultaneous decrease in at least one other criterion.



In the literature other terms have also been used instead of
Pareto optimal or minimal solutions, including words such
as nondominated, noninferior, efficient, functional-efficient
solutions.

The solution x0 is ideal if all objectives have their opti-
mum in a common point x0.

Definition 2. (Pareto front)
The images of the Pareto optimum points in the criterion
space are called Pareto front.

The system of equations (P ) can be transformed into a
multiobjective optimization problem. Each equation can be
considered as an objective function. The goal of this opti-
mization function is to minimize the difference (in absolute
value) between left side and right side of the equation. Since
the right term is zero, the objective function is denoted by
the absolute value of the left term.

The system (P ) is then equivalent to:

(P ′)

8>>><>>>:
minimize abs(f1(x1, x2, ..., xn))
minimize abs(f2(x1, x2, ..., xn))
...
minimize abs(fn(x1, x2, ..., xn))

3. EVOLUTIONARY NONLINEAR EQUA-
TION SYSTEM

An evolutionary technique is applied to solving the mul-
tiobjective problem obtained by transforming the system of
equations. We generate some starting points (initial solu-
tions) within defined domain. Then these solutions were
evolved in an iterative manner. In order to compare two
solutions we use the Pareto dominance relationship. Ge-
netic operators (such as crossover and mutation) are used.
Convex crossover and gaussian mutation are used [11]. An
external set was used for storing all the nondominated so-
lutions found during the iteration process. Tournament se-
lection is applied. n individuals are randomly selected from
the unified set of current population and external popula-
tion. Out of these n solutions the one which dominated a
greater number of solutions is selected. If there are two or
more ’equal’ solutions then one is picked at random. At
each iteration we update this set by introducing all the non-
dominated solutions obtained at the respective step and we
are removing form the external set all solutions which will
become dominated.

The algorithm can be described as follows:
Step 1. Set t = 0.

Randomly generate population P (t).
Set EP (t) = ∅. (EP denoted the external population.
Step 2. Repeat

Step 2.1. Evaluate P (t).
Step 2.2. Selection (P (t) ∪ (t)).
Step 2.3. Crossover.
Step 2.4. Mutation.
Step 2.3. Select all nondominated individuals
obtained.
Step 2.3. Update EP (t).
Step 2.3. Update (P (t) (keep best between

parents and offspring).
Step 2.3. Set t := t + 1.

Until t = numberofgenerations.
Step 3. Print EP (t).

4. EXPERIMENTS
This section reports the several experiments and compar-

isons which we performed. We consider the same problems
(Example 1 and Example 2 below) as the ones used by Ef-
fati and Nazemi [10]. Parameters used by the evolutionary
approach for both examples are given in Table 1.

Table 1: Parameter setting used by the evolutionary
approach.

Parameter
Value
Example 1 Example 2

Population size 250 300
Number of generations 150 200
Sigma (for mutation) 0.1 0.1
Tournament size 4 5

4.1 Example 1
Consider the following nonlinear system:�
f1(x1, x2) = cos(2x1)− cos(2x2)− 0.4 = 0
f2(x1, x2) = 2(x2 − x1) + sin(2x2)− sin(2x1)− 1.2 = 0

Results obtained by applying Newton’s method, Effati’s
technique and the proposed method are presented in Table
2.

As evident from Table 2, results obtained by the Evolu-
tionary Algorithm (EA) are better than the ones obtained
by the other techniques. Also, by applying an evolutionary
technique we don’t need any additional information about
the problem (such as the functions to be differentiable, an
adequate selection of the starting point, etc).

Table 2: Results for the first example.
Method Solution Functions values
Newton (0.15, 0.49) (-0.00168, 0.01497)
Effati (0.1575, 0.4970) (0.005455, 0.00739)
EA (0.15772, 0.49458) (0.001264, 0.000969)

4.2 Example 2
We have the following problem:�

f1(x1, x2) = ex1 + x1x2 − 1 = 0
f2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0

Results obtained by Effati’s method and the evolutionary
approach are given in Table 3. For this example, the evolu-
tionary approach obtained better results better than Effati’s
method. These experiments show the efficiency and advan-
tage of applying evolutionary techniques for solving systems
of nonlinear equations against standard mathematical ap-
proaches.

Table 3: Results for the second example.
Method Solution Functions values
Effati (0.0096, 0.9976) (0.019223, 0.016776)
EA (-0.00138, 1.0027) (-0.00276, -6,37E-5)



5. CONCLUSIONS
The proposed approach seems to be very efficient for solv-

ing equation systems. We analyzed here the case of non-
linear equation systems. The proposed approach could be
extended for higher dimensional systems. Also, in a similar
manner, we can solve inequations systems.

6. REFERENCES
[1] C. Brezinski, Projection methods for systems of

equations, Elsevier, 1997.

[2] C.G. Broyden, A class of methods for solving
nonlinear simultaneous equations. Mathematics of
Computation, 19, 577-593, 1965.

[3] A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region
methods, SIAM, Philadelphia, 2000.

[4] A. Cuyt, P.van der Cruyssen, Abstract Pade
approximants for the solution of a system of nonlinear
equations, Computational Mathematics and
Applications, 9, 139-149, 1983.

[5] J.E. Denis, On Newtons Method and Nonlinear
Simultaneous Replacements, SIAM Journal of
Numerical Analisys, 4, 103108, 1967.

[6] J.E. Denis, On Newtonlike Methods, Numerical
Mathematics, 11 , 324330, 1968.

[7] J.E. Denis, On the Convergence of Broydens Method
for Nonlinear Systems of Equations, Mathematics of
Computation, 25, 559567, 1971.

[8] J.E. Denis, H. Wolkowicz, LeastChange Secant
Methods, Sizing, and Shifting, SIAM Journal of
Numerical Analisys, 30, 12911314, 1993.

[9] J.E. Denis, M. ElAlem, K. Williamson, A
Trust-Region Algorithm for Least-Squares Solutions of
Nonlinear Systems of Equalities and Inequalities,
SIAM Journal on Optimization 9(2), 291-315, 1999.

[10] S. Effati, A.R. Nazemi, A new methid for solving a
system of the nonlinear equations, Applied
Mathematics and Computation, 168, 877-894, 2005

[11] Goldberg, D.E. Genetic algorithms in search,
optimization and machine learning. Addison Wesley,
Reading, MA, 1989.

[12] W. Gragg, G. Stewart, A stable variant of the secant
method for solving nonlinear equations, SIAM Journal
of Numerical Analisys, 13, 889-903, 1976.

[13] J. M. Ortega and W. C. Rheinboldt, Iterative solution
of nonlinear equations in several variables. New York:
Academic Press, 1970

[14] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.
Flannery, Numerical Recipes in C: The Art of
Scientific Computing, Cambridge University Press,
2002.

[15] Steuer, R. E. Multiple Criteria Optimization. Theory,
Computation, and Application. Wiley Series in
Probability and Mathematical Statistics: Applied
Probability and Statistics. New York: John Wiley
Sons, Inc, 1986.


