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Abstract 
 
 This article proposes a particle swarm based 
segmentation algorithm for automatically grouping the 
pixels of an image into different homogeneous regions. 
In contrast to most of the existing evolutionary image 
segmentation techniques, we have incorporated spatial 
information into the membership function for 
clustering. The spatial function is the summation of the 
membership function in the neighborhood of each pixel 
under consideration. The two very important 
advantages of the new method are: 1) It does not 
require a priori knowledge of the number of partitions 
in the image and 2) It yields regions, more 
homogeneous than the existing methods even in 
presence of noise. 

 
1. Introduction 
 
    Image segmentation may be defined as the process 
of dividing an image into disjoint homogeneous 
regions. These homogeneous regions usually contain 
similar objects of interest or part of them. The extent of 
homogeneity of the segmented regions can be 
measured using  some image property (e. g. pixel 
intensity [1]). On the other hand, clustering can be 
defined as the optimal partitioning of a given set of n 
data points into c subgroups, such that data points 
belonging to the same group are as similar to each 
other as possible whereas data points from two 
different groups share the maximum difference. 
     Image segmentation can be treated as a clustering 
problem where the features describing each pixel 
correspond to a pattern, and each image region (i.e. a 
segment) corresponds to a cluster [1]. Therefore many 
clustering algorithms have widely been used to solve 

the segmentation problem (e.g., K-means [2], FCM [3], 
ISODATA [4] and Snob [5]).  
     The fuzzy c-means (FCM) [6] seems to be the most 
popular algorithm in the field of fuzzy clustering. 
Many researchers have attempted modifications of the 
classical FCM and applications to image segmentation 
in the past few years [7-12].  
    Nevertheless, most of the existing clustering 
algorithms assume a priori knowledge of the number of 
classes, c, while in many practical situations, the 
appropriate number of classes is unknown or 
impossible to determine even approximately.  
    Finding an optimal number of clusters in a large 
dataset is usually a challenging task. Several 
researchers [13, 14] have investigated the problem. 
However, the outcome is still unsatisfactory [15]. 
Works on automatic clustering with evolutionary 
strategies (ES), evolutionary programming (EP) and 
variable string-length genetic algorithm (VGA) have 
been reported in [16-18].  
   Compared to a huge number of clustering algorithms 
based on different kinds of evolutionary algorithms, 
not much work has been reported on algorithms like 
Particle Swarm Optimization (PSO) or Differential 
Evolution (DE) for clustering image pixels [19, 20]. To 
the best of our knowledge, PSO has not been applied to 
the automatic fuzzy clustering  till date.  
   In this paper, we have used a modified version of the 
basic PSO algorithm for the fuzzy segmentation of 
images. Since the pixels in an image generally have 
high correlation, we incorporated the spatial 
information of each pixel in its membership grades in 
different clusters. We borrowed the idea of spatial 
information from [21], which used it only for FCM 
algorithm. However, the automatic clustering scheme 
as well as the multi-elitist PSO model are novel. We 
provide comparison among our method and a very 
recent automatic fuzzy clustering technique [22] in 



terms of final clustering accuracy, speed of obtaining 
an acceptable solution and algorithm robustness. 
 
2. The Fuzzy Clustering Problem  
 
    Let P ={P1, P2, ....., Pn} be a set of n patterns or data 
points, each having d features. These patterns can also 
be represented by a profile data matrix Xn×d having n d-
dimensional row vectors. The ith row vector 
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characterises the ith object from the set P and each 

element Xi,j in iX
r

 corresponds to the jth real value 
feature (j = 1, 2, .....,d) of the ith pattern ( i =1,2,...., n).  
    Given such an Xn×d, a partitional clustering 
algorithm tries to find a partition C = {C1, C2,......, Cc} 
such that the similarity of the patterns in the same 
cluster Ci is maximum and patterns from different 
clusters differ as far as possible. The partitions should 
maintain the following properties: 
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     In the case of fuzzy clustering, a pattern may belong 
to all the classes with a certain fuzzy membership 
grade for each class. So, in this case we need to evolve 
an appropriate partition matrix U = [uij]c×n, where uij 
�[0, 1], such that uij denotes the grade of membership 
of the jth element to the ith cluster. In fuzzy partitioning 
of the data, the following conditions hold:      
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2.1 The Fuzzy c-means algorithm 
 
In the classical fuzzy c-means (FCM) algorithm, a 
within cluster sum  function Jm is minimized to evolve 
the proper cluster centers:  
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where iV
r

 is the ith cluster center,  is the jjX
r

th d-
dimensional data vector and || . || is an inner product-

induced norm in d dimensions. Here m (m>1) is any 
real number that influences the membership grade. 
Given c classes, we can determine their cluster centers 
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 for i=1 to c using the following expression: 
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Now differentiating the performance criterion with 
respect to iV

r
 (treating uij as constants) and with respect 

to uij (treating iV
r

 as constants) and setting them to zero 
the following relation can be obtained:                      
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2.2 Cluster Validity Indices in the Fuzzy 
Environment 
 
    To judge the quality of a partition provided by some 
clustering algorithm, it is necessary to have a well-
defined function, called a cluster validity index, 
evaluated on the final clustering solutions. Below, we 
describe the two well-known validity indices used in 
the experiments reported here. 
 
2.2.1 Xie-Beni Index 
 
    This index, due to Xie and Beni [23], is given by: 

2
1 1

22

min jiji

c

i

n

j
ijij

m
VVn

VXu

XB rr

rr

−×

−

=
≠

= =
∑∑

                          (5) 

Using XBm the optimal number of clusters can be 
obtained by minimizing the index value.  

 
2.2.2 Partition Entropy 
 

The partition entropy function [1] is given by, 

n

uu

V

n

j

c

i
ijij

pe

∑∑
= =

−

= 1 1

]log[

                               (6) 

The idea of the validity function is that the partition 
with less fuzziness means better performance. 
Consequently, the best clustering is achieved when the 
value Vpe is minimal. 
 



2.3 The Spatial Information 
 
    An important characteristic of an image is the high 
degree of correlation among the neighboring pixels. In 
other words, these neighboring pixels possess similar 
feature values, and the probability that they belong to 
the same cluster is great. This spatial relationship is 
important in clustering, but it is not utilized in a 
standard FCM algorithm. To exploit the spatial 
information, a spatial function is defined as: 
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δ represents a square window centered 

on pixel (i.e. data point)  in the spatial domain. A 
5×5 window was used throughout this work. Just like 
the membership function, the spatial function h

jX
r

ij 
represents the probability that pixel belongs to ijX

r th 
cluster. The spatial function of a pixel for a cluster is 
large if the majority of its neighborhood belongs to the 
same cluster. We incorporate the spatial function into 
membership function as follows: 
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   Here in all the cases we have used r = 1, t = 1 after 
considerable trial and errors. 
 
3. The Multi-elitist PSO Model (MEPSO) 
 

In PSO [23], a population of particles is initialized 
with random positions:  
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and velocities:  
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in d-dimensional space. A fitness function, f is 

evaluated, using the particle’s positional coordinates as 
input values.   Positions and velocities are adjusted, and 
the function is evaluated with the new coordinates at 
each time-step.  The velocity and position update 
equations for the pth dimension of ith particle in the 
swarm may be given as follows:  

vip (t+1) = ω. vip (t) + C1. φ1. (Plip - Zip (t)) + 
                  C2. φ2.   (Pgp - Z ip(t)) 
Zip (t+1) = Zip (t) + vip (t+1)                                  (9) 

                                                                                                                                                          In the proposed method, for n data points, each p-
dimensional, and for a user-specified maximum 
number of clusters  c

The variables φ1 and φ2 are random positive 
numbers, drawn from a uniform distribution, and with 
an upper limit φmax, which is a parameter of the system. 
C1 and C2 are called acceleration constants, and ω is 

the inertia weight. Pli is the best solution found so far 
by an individual particle, while Pg represents the fittest 
particle found so far in the entire community. The 
canonical PSO has been subjected to empirical and 
theoretical investigations by several researchers [24, 
25].  In many occasions, the convergence is premature, 
especially if the swarm uses a small inertia weight ω or 
constriction coefficient [25].  As the global best found 
early in the searching process may be a poor local 
minima, a multi-elitist strategy is proposed for 
searching the global best of the PSO. We call the new 
variant of PSO the MEPSO. The idea draws inspiration 
from the work reported in [26]. We define a growth 
rate β for each particle. When the fitness value of a 
particle of tth iteration is higher than that of a particle 
of (t-1)th iteration, β will be increased. After the local 
best of all particles are decided in each generation, we 
move the local best, which has higher fitness value 
than the global best into the candidate area. Then the 
global best will be replaced by the local best with the 
highest growth rate β. Therefore, the fitness value of 
the new global best is always higher than the old global 
best. Pseudo code for MEPSO is as follows: 

For t =1 to tmax
   For j =1 to N                           // swarm size is N 
      If (the fitness value of particlej in t-th time-step >     

that of particlej in ( t-1)-th time-step) 
                                βj = βj +1; 
        End  
      Update Local bestj . 
      If (the fitness of Local bestj > that of Global best 

now) 

          Choose Local bestj put into candidate area. 
      End 
    End 
    Calculate β of every candidate, and record the 

candidate of βmax . 
    Update the Global best to become the candidate of  
     β max . 
    Else 
       Update the Global best to become the particle of      

highest fitness value. 
  End 
End 

4. The MEPSO Based Automatic 
Clustering Algorithm 

4.1 Particle Representation 
 

max , a particle is a vector of real 
numbers of dimension cmax + cmax × p. The first cmax 



entries are positive floating-point numbers in (0, 1), 
each of which controls whether the corresponding 
cluster is to be activated (i.e. to be really used for 
classifying the data) or not. The remaining entries are 
reserved for cmax cluster centers, each p-dimensional. A 
single particle is illustrated as: 
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  Activation Threshhold                         Cluster Centroids 

 
   Every probable cluster center mi,j has p features and a 
binary flagi,j associated with it. The cluster center is 
active  (i.e., selected for classification) if flagi,j = 1 and 
inactive if flagi,j = 0. Each flag is set or reset according 
to the value of the activation threshold Ti,j. Note that 
these flags are latent information associated with the 
cluster centers and do not take part in the PSO-type 
mutation of the particle. The rule for selecting the 
clusters specified by one particle is: 
 

If  Ti,j  > 0.5 Then flagi,j = 1Else flagi,j = 0       (10) 
 

Note that the flags in an offspring are to be changed 
only through the Tij’s (according to the above rule). 
When a particle jumps to a new position, according to 
(9), the T values are first obtained which then are used 
to select (via (10)) the m values. If due to mutation 
some  threshold T in a particle exceeds 1 or becomes 
negative, it is fixed to 1 or zero, respectively. However, 
if it is found that no flag could be set to one in a 
particle (all activation threshholds are smaller than 
0.5), we randomly select 2 thresholds and re-initialize 
them to a random value between 0.5 and 1.0. Thus the 
minimum number of possible clusters is always 2. 

4.2 Fitness Function 
 
The quality of a partition can be judged by an 
appropriate cluster validity index. In the present work 
we have based our fitness function on the Xie-Benni 
index described in (5). The fitness function may be 
written as 
               

epscXB
f

i +
=
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1                                 (11)                           

All the algorithms have been developed from 
scratch in Visual C++ on a Pentium IV, 1.2 GHz PC, 
with 512 KB cache and 2 GB of main memory with 
Windows Server 2003 environment.  

where XBi is the Xie-Benni index of the i-th particle 
and eps is a very small constant (we used 0.0002). So 
maximization of this function means  minimization of 
the XB index. 
 

4.3 Avoiding Erroneous particles with Empty 
Clusters or Unreasonable  Fitness 
Evaluation 

 

    There is a possibility that in our scheme, during 
computaton of the XB index, a division by zero may be 
encountered. This may occur when one of the selected 
cluster centers is outside the boundary of distributions 
of the data set. To avoid this problem we first check to 
see if any cluster has fewer than 2 data points in it. If 
so, the cluster center positions of this special 
chromosome are re-initialized by an average 
computation. We put n/c data points for every 
individual cluster center, such that a data point goes 
with a center that is nearest to it.  

4.4 Putting it All Together 
 
   The clustering method proposed here, is a two-pass 
process at each iteration or time step. The first pass 
amounts to calculating the active clusters as well as the 
membership functions for each particle in the spectral 
domain. In the second pass, the membership 
information of each pixel is mapped to the spatial 
domain, and the spatial function is computed from that. 
The MEPSO iteration proceeds with the new 
membership that is incorporated with the spatial 
function. The algorithm is stopped when the maximum 
number of time-steps tmax is exceeded. After the 
convergence, de-fuzzification is applied to assign each 
pixel to a specific cluster for which the membership is 
maximal. 
 
 
5. Experimental Results 
 

Although we tested our algorithm over a large 
number of images with varying range of complexity, 
here we show the experimental results for three 
standard images only, due space limitation. We 
compared the proposed MEPSO based clustering 
algorithm with another recently developed fuzzy 
clustering algorithm known as FVGA (Fuzzy 
clustering with Variable length Genetic Algorithm) 
[22]. Parameter set-up for both the algorithms can be 
found in Table 1.  

   For each image data set, a single run continues 
until the number of function evaluations (FEs) reaches 
50,000. Twenty independent runs (with different seeds 
for the random number generator) have been taken for 
each algorithm. The results have been stated in terms 
of the mean best-of-run values and standard deviations 
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over these 20 runs in each case. Performance 
comparisons are made on three aspects of the solution: 
(a)  quality of the solution as determined by the two 
cluster validity indices (described in (5) and (6)), (b) 
ability to find the optimal number of clusters, and (c) 
time required to find the solution. 

Figures 1 to 3 show the three original images and 
their segmented counterparts obtained using the FVGA 
algorithm and the MEPSO based method. In Figures 1-
3 the segmented portions of an image have been 
marked with the grey level intensity of the respective 
cluster centers.   

Table 1. Algorithm parameters 
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Figure 1. (a) The original Texture image. (b) 
Segmentation by FVGA (c= 3) (c) Segmentation by 
MEPSO based method (c = 3). 
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Figure 2.  (a) The original Pepper image. (b) 
Segmentation by FVGA (c= 8) (c) Segmentation by 
MEPSO based method (c = 7) . 
 
 
 
 
 
 
 
 
 
 
 
 
(a)                                               (b)                                                                         

 
 
 
 
 
 
 
 
 
 
             (c) 

Figure 3. (a) The original MRI image. (b) 
Segmentation by FVGA (c= 5) (c) Segmentation by 
MEPSO (c = 5).  

 
In Table 2, we report the mean value of two fuzzy 

validity measures calculated over the ‘best-of-run’ 
solutions in each case. MEPSO performed well in all 

FVGA 
 

MEPSO 
 

Parameter 
 

 
Value 

 
Parameter 

 
Value 

 
Pop_size 20 Pop_size 40 
Crossover 

Probability Pc

 
0.6 

Inertia 
Weight 0.794 

C1 0.35 → 2.4 
C2 2.4 → 0.35 Mutation 

Probability Pm

 
0.05 Vmax 255 

cmax

 
10 

 
cmax

 
10 

 

cmin
2 
 cmin

2 
 



the cases (for both the indices). Table 3 reports the 
mean time taken by each algorithm to terminate on the 
image data. Finally, Table 4 contains the mean and 
standard deviations of the number of classes obtained 
by the two automatic clustering algorithms. 

 
Table2. Automatic clustering results for three real life 
grayscale images (over 20 runs; each run continued up 

 to 50,000 function evaluations) 
 
 

Table 3. Comparison among the mean execution time 
taken by the different algorithms 

 
 
Table 4. Automatic clustering results for three 
grayscale images (over 20 runs; each runs continued 
for 50,000 function evaluations) 

 
 

6. Conclusions 
 
This paper has presented a new, PSO-based strategy 

for fuzzy clustering of images. An important feature of 
the proposed algorithm is that it is able to find the 
optimal number of clusters automatically (that is, the 
number of clusters does not have to be known in 
advance).  Moreover, the proposed algorithm utilizes 
spatial information of each pixel, apart from the pixel 
intensity. The PSO algorithm has been modified with a 
multi-elitist strategy for improving its convergence 
behavior.  Experimental results show that our approach 
outperforms the state-of-the-art FVGA strategy over a 
variety of image data sets. We could not include the 
full set of results obtained over a test suit of 30 images 
due to space constraints. Yet one may note that, not 
only does the proposed method find the optimal 
number of clusters, it also manages to find better 
clustering of the data points for major cluster validity 
indices used in the literature.  Our algorithm may have 
a worse run-time than FCM, but clearly this is an 
unfair comparison as the FCM has to be fed with the 
correct number of clusters, whereas the proposed 
method finds it itself. 
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