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Abstract

The scheduling problem in distributed data-intensive
computing environments has been an active research topic
due to immense practical applications. In this paper,
we model the scheduling problem for work-Flow applica-
tions in distributed Data-intensive computing environments
(FDSP) and make an attempt to formulate and solve the
problem using a particle swarm optimization approach. We
illustrate the algorithm performance and trace its feasibility
and effectiveness with the help of an example.

1. Introduction

With the development of the High Performance Com-
puting (HPC), Grid, etc., some complex applications are
designed by communities of researchers in domains such
as high-energy physics, astronomy, biology [1, 2, 3, 4] and
Human Brain Planning (HBP) [5]. For implementing and
utilizing successfully these applications, one of the most
important activity is to find appropriate schedules before
the application is executed. The goal is to find an optimal
assignment of tasks in the applications with respect to the
costs of the available resources. However, the scheduling
problem in distributed data-intensive computing environ-
ments seems quite different from the one in the traditional
situation. Scheduling jobs and resources in these data-
intensive applications need to meet the specific require-
ments, including process flow, data access/transfer, comple-
tion cost, flexibility and availability. All kinds of compo-
nents in the application can interact with each other directly
or indirectly. Scheduling algorithms using traditional com-
puting paradigms barely consider the data transfer problem
during mapping computational tasks, and this neglect might
be costly in distributed data-intensive applications [6].

In this paper, we explore the scheduling problem for

work-flow applications in distributed data-intensive com-
puting environments. This paper is organized as follows.
We model and formulate the problem in Section 2. The pro-
posed approach based on particle swarm algorithm is pre-
sented in Section 3. In Section 4, experiment results and
discussions are provided in detail. Finally, we conclude our
work in the paper.

2. Problem formulation

The scheduling problem in distributed data-intensive
computing environments has been an active research topic,
and therefore many terminologies have been suggested. Un-
fortunately, some of the terms are neither clearly stated nor
consistently used by different researchers, which frequently
makes readers confused. For clarity purposes, some key ter-
minologies are defined as follows:

• Machine (computing unit)
Machine (computing unit) is a set of computational re-
sources with limited capacities. It may be a simple per-
sonal machine, a workstation, a super-computer, or a
cluster of workstations. The computational capacity of
the machine depends on its number of CPUs, amount
of memory, basic storage space and other specializa-
tions. In other words, each machine has its calculating
speed, which can be expressed in number of Cycles
Per Unit Time (CPUT).

• Data Resource
Data resources are the datasets which effect the
scheduling. They are commonly located on various
storage repositories or data hosts. Data resources are
connected to the computational resources (machines)
by links of different bandwidths.

• Job and Operation
A job is considered as a single set of multiple atomic
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operations/tasks. Each operation will be typically al-
located to execute on one single machine without pre-
emption. It has input and output data, and processing
requirements in order to complete its task. One of the
most important processing requirements is the work-
flow, which is the ordering of a set of operations for
a specific application. These operations can be started
only after the completion of the previous operations
from this sequence, which is the so-called work-flow
constraints. The operation has the processing length in
number of cycles.

• Work-Flow Application
A work-flow application consists of a collection of in-
teracting components that need to be executed in a cer-
tain partial order for solving successful a certain prob-
lem. The components involve a number of dependent
or independent jobs, machines, the bandwidth of the
network, etc. They have specific control and data de-
pendency between them.

• Schedule and Scheduling Problem
A schedule is the mapping of the tasks to specific time
intervals of machines. A scheduling problem is speci-
fied by a set of machines, a set of jobs/operations, op-
timality criteria, environmental specifications, and by
other constraints. The scheduling problem for work-
flow applications in distributed Data-intensive comput-
ing environments is abbreviated to “FDSP”.

To formulate the scheduling problem, suppose a work-
flow application comprises of q Jobs {J1, J2, · · · , Jq},
m Machines {M1,M2, · · · ,Mm} and k Data hosts
{D1, D2, · · · , Dk}. In the application, the calculating
speed of the machine are {P1, P2, · · · , Pm}. Each job con-
sists of a set of operations Jj = {Oj,1, Oj,2, · · · , Oj,p}.
For convenience, we will decompose all the jobs to atomic
operations and re-sort the operations as {O1, O2, · · · , On}.
Their processing lengths are L1, L2, · · · , Ln, respectively.
All the operations are in the specific work-flow, and they
will be carried orderly out on the machines with data re-
trieval, data input and data output. The operations in the
work-flow can be represented as or be transformed to a Di-
rected Acyclic Graph (DAG), where each node in the DAG
represents an operation and the edges denote control/data
dependencies.

Definition 1 A work-flow graph for for data-intensive
work-flow applications can be represented as G = (O, E),
where the set of nodes O = {O1, O2, · · · , On} corre-
sponds to the set of operations to be executed, and the set of
weighted, directed edges E represents both the precedence
constraints and the data transfers volume among operations
in O. An edge (Oi, Oj) ∈ E implies that Oj can not start
execution until Oi finishes and sends its result to Oj . We
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Figure 1. An instance with 7 operations.

call task Oi predecessor of task Oj and task Oj successor
of task Oi. Let Pred(Oi) denote the set of all the prede-
cessors of task Oi. Let Succ(Oi) denote the set of all the
successors of task Oi.

The relation between the operations can be represented
by a flow matrix F = [fi,j ], in which the element fi,j stores
the weight value if the edge < Oi, Oj > is in the graph,
otherwise it is set to “-1”. Figure 1 depicts a work-flow
instance of 7 operations. The recursive loop between O1

and O7 can be neglected when the scheduling focused on
the stage within the loop. Its flow matrix F is




−1 8 3 9 −1 −1 −1
−1 −1 −1 −1 6 −1 −1
−1 −1 −1 −1 2 12 −1
−1 −1 −1 −1 −1 7 −1
−1 −1 −1 −1 −1 −1 4
−1 −1 −1 −1 −1 −1 8
−1 −1 −1 −1 −1 −1 −1




The data host dependencies of the operations are deter-
mined by the retrieval matrix R = [ri,j ]. The element ri,j

is the retrieval time which Oi executes retrieval process-
ing on the data host Dj . There are the other two matrices
A = [ai,j ] and B = [bi,j ], where the element ai,j in the
former is the distance between the machine Mi and Mj ,
and the element bi,j in the latter is the distance between the
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machine Mi and the data host Dj . For each operation, its
completion time is the sum of three components: the input
data time, the retrieval data time, and the execution time on
the assigned machine. It is to be noted that the input data
time can be started to accumulate only after the completion
of the previous operations in the work-flow. Given a feasi-
ble solution S = {S1, S2, · · · , Sn}, Si is the serial number
of the machine which the operation Oi is assigned on. De-
fine COi

(i ∈ {1, 2, · · · , n}) as the completion time that the
machine MSi

completes the operation Oi. For the operation
Oi, its completion time COi

can be calculated by Eq. (1).

COi =
n∑

l=1
fl,i 6=−1

fl,iaSl,Si

k∑

h=1

ri,hbSi,h + Li/PSi

(1)

To formulate the objective,
∑

CMi
represents the time

that the machine Mi completes the processing of all the op-
erations assigned on it. Define Cmax = max{∑CMi

} as
the makespan, and Csum =

∑m
i=1(

∑
CMi) as the flow-

time. The scheduling problem is thus to both determine
an assignment and a sequence of the operations on all ma-
chines that minimize some criteria. Most important opti-
mality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;

2. the sum of the completion times (flowtime): Csum.

Minimizing Csum asks the average operation is finished
quickly, at the expense of the largest operation taking a
long time, whereas minimizing Cmax asks that no oper-
ation takes too long, at the expense of most operations
taking a long time. Minimization of Cmax would result
in maximization of Csum. The weighted aggregation is
the most common approach to the problems. According
to this approach, the objectives, F1 = min{Cmax} and
F2 = min{Csum}, are summed to a weighted combina-
tion:

F = w1min{F1}+ w2min{F2} (2)

where w1 and w2 are non-negative weights, and w1 +w2 =
1. These weights can be either fixed or adapt dynamically
during the optimization. The fixed weights, w1 = w2 =
0.5, are used in this paper. Alternatively, the weights can be
changed gradually according to the Eqs. (3) and (4). The
alternate curves (R = 200) are showed in Figure 2. In fact,
the dynamic weighted aggregation [7] mainly takes F1 into
account. Because F2 is commonly much larger than F1, the
final solution would have a large weight (w1 → 1) on F1

during minimizing the objective.

w1(t) = |sin(2πt/R)| (3)
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Figure 2. The dynamic weight curves.

w2(t) = 1− w1(t) (4)

Definition 2 A scheduling problem for data-intensive
work-flow applications can be defined as

∏
=

(J(L),M(P ), D, G,R, A,B, f). If all the jobs are de-
composed to atomic operations and the relationship be-
tween the operations are transformed to the flow matrix
F , the scheduling problem can be represented as

∏
=

(O(L),M(P ), D, F, R,A, B, f). The key components are
operations, machines and data-hosts. For the sake of sim-
plify, the scheduling problem also be represented in triple
T = (O, N, D).

3. Particle swarm heuristic for FDSP

Particle swarm algorithm is inspired by social behav-
ior patterns of organisms that live and interact within large
groups. In particular, it incorporates swarming behaviors
observed in flocks of birds, schools of fish, or swarms
of bees, and even human social behavior, from which the
Swarm Intelligence (SI) paradigm has emerged [8, 9]. It
could be implemented and applied easily to solve various
function optimization problems, or the problems that can
be transformed to function optimization problems. As an
algorithm, its main strength is its fast convergence, which
compares favorably with many other global optimization al-
gorithms [10, 11, 12]. The classical particle swarm model
consists of a swarm of particles, which are initialized with
a population of random candidate solutions. They move it-
eratively through the d-dimension problem space to search
the new solutions, where the fitness f can be calculated as
the certain qualities measure. Each particle has a position
represented by a position-vector ~xi (i is the index of the
particle), and a velocity represented by a velocity-vector ~vi.
Each particle remembers its own best position so far in a
vector ~x#

i , and its j-th dimensional value is x#
ij . The best

position-vector among the swarm so far is then stored in a
vector ~x∗, and its j-th dimensional value is x∗j . During the
iteration time t, the update of the velocity from the previous
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velocity to the new velocity is determined by Eq.(5). The
new position is then determined by the sum of the previous
position and the new velocity by Eq.(6).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t)− xij(t))

+ c2r2(x∗j (t)− xij(t))
(5)

xij(t + 1) = xij(t) + vij(t + 1) (6)

In the particle swarm model, the particle searches the so-
lutions in the problem space within a range [−s, s] (If the
range is not symmetrical, it can be translated to the corre-
sponding symmetrical range.) In order to guide the particles
effectively in the search space, the maximum moving dis-
tance during one iteration is clamped in between the maxi-
mum velocity [−vmax, vmax] given in Eq.(7), and similarly
for its moving range given in Eq.(8):

vi,j = sign(vi,j)min(|vi,j | , vmax) (7)

xi,j = sign(xi,j)min(|xi,j | , xmax) (8)

The value of vmax is ρ × s, with 0.1 ≤ ρ ≤ 1.0 and
is usually chosen to be s, i.e. ρ = 1. The pseudo-code
for particle swarm optimization algorithm is illustrated in
Algorithm 1.

Algorithm 1 Particle Swarm Algorithm
01. Initialize the size of the particle swarm n, and other
02. parameters; Initialize the positions and the velocities
03. for all the particles randomly.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. ~x∗ = argminn

i=1(f(~x∗(t− 1)), f(~x1(t)),
08. f(~x2(t)), · · · , f(~xi(t)), · · · , f(~xn(t)));
09. For i= 1 to n
10. ~x#

i (t) = argminn
i=1(f(~x#

i (t− 1)), f(~xi(t));
11. For j = 1 to d
12. Update the j-th dimension value of ~xi and ~vi

13. according to Eqs.(5),(7),(6),(8);
14. Next j
15. Next i
16. End While.

For applying particle swarm algorithm successfully for
the FDSP problem, one of the key issues is how to map the
problem solution to the particle space, which directly af-
fects its feasibility and performance [13, 14]. We setup a
search space of n dimension for an (n−Operations, m−
Machines) FDSP problem. Each dimension is limited to
[1,m+1). For example, consider the (7−Operations, 3−
Machines) FDSP, Figure 3 illustrates how to map one pos-
sible assignment to one particle position coordinates in the
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Figure 3. The Mapping between particle and
FDSP.

particle swarm domain. Each dimension of the particle’s
position maps one operation, and the value of the position
indicates the machine number to which this task/operation
is assigned during the course of particle swarm algorithm.
So the value of a particle’s position should be integer. But
after updating the velocity and position of the particles, the
particle’s position may appear real values such as 1.4, etc.
It is meaningless for the assignment. Therefore, in the al-
gorithm we usually round off the real optimum value to its
nearest integer number. By this way, we convert a contin-
uous optimization algorithm to a scheduling problem. The
particle’s position is a series of priority levels of assigned
machines according to the order of operations. The se-
quence of the operations will be not changed during the it-
eration.

Since the particle’s position indicates the potential
schedule, the position can be “decoded” to the scheduling
solution. It is to be noted that the solution will be unfeasi-
ble if it violates the work-flow constraints. The operations
must be started only after the completion of the previous
latest operation in the work-flow. The best situation is the
starting point of the operation in alignment with the ending
point of its previous latest operation. After all the opera-
tions have been processed, we get the feasible scheduling
solution and then calculate the cost of the solution.

4. Algorithm performance demonstration

To illustrate the effectiveness and performance of the
particle swarm optimization algorithm, we will show an ex-
ecution trace of the algorithm with the help of the FDSP
problem involving an application with 7 operations, 3 ma-
chines and 3 data hosts represented as (O7,M3, D3) prob-
lem. The speeds of the 3 machines are 4, 3, 2 CPUT, re-
spectively, i.e. P = {4, 3, 2}. And the length of the 7
operations are 6,12,16,20,28,42,60 cycles, respectively, i.e.
L = {6, 12, 16, 20, 28, 42, 60}. The flow matrix is F in
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Table 1. Parameter settings for the algo-
rithms.

Algorithm Parameter name value
size of the population 20

GA Probability of crossover 0.8
Probability of mutation 0.09
Swarm size 20
Self coefficient c1 1.49

PSO Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1
Clamping Coefficient ρ 0.5
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Figure 4. Performance for the FDSP
(O7,M3, D3)

Section 2, and its other information is given as follows:

R =




6 18 76
50 4 51
1 85 15

19 11 1
39 12 0
36 0 74
61 82 30




A =




0 21 95
21 0 41
95 41 0




B =




0 45 91
45 0 59
91 59 0




0 5000 10000 15000

1

2

3 O1

O2

O3

O4

O5

O6

O7

W

W

M

M

M

Figure 5. A scheduling solution for the FDSP
(O7,M3, D3)
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Figure 6. A scheduling solution for the FDSP
(O7,M3, D3)

In our experiments, the algorithms used for comparison
were GA (Genetic Algorithm) and PSO (Particle Swarm
Optimization). The algorithms were repeated 20 times with
different random seeds. Each trial had a fixed number
of 2,000 iterations. Other specific parameter settings of
the algorithm are described in Table 1, as recommended
in [15, 16]. The fixed weights, w1 = w2 = 0.5, are
used in objective cost function. The average fitness values
of the best solutions throughout the optimization run were
recorded. The average and the standard deviation were cal-
culated from the 20 different trials. The standard deviation
indicates the differences in the results during the 20 differ-
ent trials.

Figure 4 illustrates the performance curve for our algo-
rithm during the search processes for the FDSP problem.
The results (F ) for all the 20 GA runs were 20212. The
best scheduling solution is {3, 1, 2, 3, 1, 3, 1}, in which the
makespan is 14983 and the flowtime is 25440. Figure 5
illustrates the best scheduling solution offered by GA, in
which “W” means the waiting time. The results (F ) for
20 PSO runs were {19276, 19276, 19276, 20582, 19276,
19276, 19276, 19276, 20582, 20582, 19276, 19276, 19276,
19276, 19276, 19276, 20582, 19276, 19276, 20582}, with
an average value of 19602. The standard deviation is
580.2057. The best scheduling solution in the 20 runs is
{3, 1, 2, 2, 1, 2, 2}, in which the makespan is 14578 and the
flowtime is 23973. Figure 6 shows the PSO best schedul-
ing solution. As shown in Figure 6, the operations O2 and
O3 both have to wait for 1611 Unit Time before they are
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processed in the scheduling solution. The operation O7 is
assigned to an effective machine only after all other opera-
tions had completed. So the machine M2 has a longer work
time obviously than other machines because of the work-
flow constraints.

5. Conclusions

In this paper, we modeled and formulated the schedul-
ing problem for work-flow applications in distributed
data-intensive computing environments (FDSP). A particle
swarm approach was proposed to solve the problem. Em-
pirical results demonstrated that the proposed algorithm was
feasible and effective. It can be applied in distributed data-
intensive applications and meet the specific requirements,
including work-flow constraints, data retrieval/transfer, job
interact, minimum completion cost, flexibility and avail-
ability.

Our future work is targeted to generate more FDSP
instances and involve more heuristics approaches.
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