
The N/R One Time Password System

Vipul Goyal
1

, Ajith Abraham
2

, Sugata Sanyal
3

 and Sang Yong Han
2

1

OSP Global, Mumbai, India
vgoyal@ospglobal.com

2
School of Computer Science and Engineering, Chung-Ang University, Korea

ajith.abraham@ieee.org, hansy@cau.ac.kr
3

School of Technology & Computer Science, Tata Institute of Fundamental Research, India
sanyal@tifr.res.in

Abstract

A new one time password system is described which
is secure against eavesdropping and server database
compromise at the same time. Traditionally, these
properties have proven to be difficult to satisfy at the
same time and only one previous scheme i.e. Lamport
Hashes also called S/KEY one time password system
has claimed to achieve that. Lamport hashes however
have a limitation that they are computationally
intensive for the client and the number of times a client
may login before the system should be re-initialized is
small. We address these limitations to come up with a
new scheme called the N/R one time password system.
The basic idea is have the server aid the client
computation by inserting ‘breakpoints’ in the hash
chains. Client computational requirements are
dramatically reduced without any increase in the
server computational requirements and the number of
times a client may login before the system has to be re-
initialized is also increased significantly. The system is
particularly suited for mobile and constrained devices
having limited computational power.

1. Introduction

In the past decade, computer networks have grown
at an explosive rate. In a wide range of environments,
such networks have become a mission critical tool.
Organizations are building networks with larger scales
than ever before, and connectivity with the global
internet has become indispensable. Along with this
trend has come an explosion in the use of computer
networks as a means of illicit access to computer
systems. In the past, intruders have used flaws in

network software to gain entry into remote computer
systems. As more vendors and more sites fix the
known flaws in their network software, many crackers
are now looking for other weaknesses to exploit.

One particularly widespread attack is to capture and
replay passwords commonly used to authenticate users.
Since so many protocols send their passwords in clear
text, anyone who can read network traffic can gain
access to whatever is protected by clear text passwords.
Crackers can use network management tools to sniff
packets to discover clear text passwords, thereby
gaining unauthorized access to systems using clear text
reusable passwords.

One solution to this problem is to encode the
password in such a way that an encoded password can
only be used once and cannot be used to generate any
other encoded password. Such an encoded password is
called one-time password because it is usable exactly
once. If an adversary captures such a password from a
stream of data sent over a network, she cannot use it to
gain access to the target system either by using it again
(the first condition) or by performing any new coding
on it (the second condition). In practice, the second
condition is guaranteed by computational infeasibility
rather than by impossibility – it would take an attacker
an inordinately long time to discern any useful data
from the intercepted one-time password.

Such an encoding was first devised by Lamport [1]
and later popularized with the development of S/KEY
at Bellcore [2]. S/KEY was further improved and re-
implemented by United States Naval Research
Laboratory to give rise to the OPIE (One Time
Password in Everything) software distribution [13].

As we describe in Section 2, the above systems
work on the principle of hash chain. However, all of

them have two common limitations i.e. (a) The client
computational requirements are high making the
system unsuitable for mobile devices with limited
computational power and memory, and (b) The number
of times the client may login before the system is
required to be re-initialized is small. Note that re-
initialization means that some manual intervention is
required, e.g. the client should go personally to the
server administrator to have the system re-initialized.
There is no secure way of automatic re-initialization.

 In this paper we device a novel construction of
hash chains. The basic idea here is to repeatedly
require the insertion of user password after a fixed
distance in the hash chain. The links at which the
insertion of the password is required may be made
public and stored at the host (server). The host would
then transfer one of those links to the user for aiding
the computation of the user. This results in a
significant decline in the computational requirement of
the user. Since, this makes the construction of hash
chain possible in manner such that increasing the
length of the hash chain does not increase the user
computational requirements; hash chains of very large
length are feasible. Hence, the number of times a user
may login before re-initialization is required is very
high.

An important point to note here is that in all
‘password based authentication systems’, the client is
assumed to be stateless and cannot be assumed to store
anything. The only thing a user is required in order to
be able to login is the password. Hence, the
intermediate values of the hash chains cannot be stored
by the client.

Rest of the paper is organized as follows- Section 2
gives the description of related one time password
systems, i.e. Lamport Hashes. Note that S/KEY and
other systems are conceptually the same as Lamport
Hashes and differ only in the implementation details.
This section also gives an idea of hash chains in
general. Section 3 describes the proposed construction
of the one time password system and various issues
involved with it. Section 4 concludes the paper.

2. Related Research

The only password based symmetric key
authentication protocol achieving resistance to
password file compromise and eavesdropping is
Lamport Hashes [1]. Later it was implemented by Phil
Karn to give rise to the S/KeyTM One Time Password
system [2]. It was also standardized in RFC 1760 titled
“The S/KEY One-Time Password System” [3] and in
RFC 2289 titled “A One-Time Password System” [5]
which preceded RFC 1938 [4]. A nice property of the

system is that it avoids all kind of encryption
mechanisms and uses only one way hash functions
making it quite efficient. Further, S/KEY was
improved by the United States Naval Research
Laboratory to give rise to the OPIE (One Time
Password in Everything) software distribution [13].
OPIE mainly differs with S/KEY in the
implementation details, the basic idea remaining the
same.

Lamport hashes are based on one way hash function
(OWHF). One way functions are public functions that
are easy to compute but computationally infeasible to
invert, for suitable definitions of “easy” and
“infeasible”. If the output of a one-way function is of
fixed length, it is called a one-way hash function
(OWHF). More precisely, the definition of OWHF is
given as:

Definition: A function h that maps bit strings, either of
an arbitrary length or a predetermined length, to strings
of a fixed length is a OWHF if it satisfies three
additional properties:

 Given x, it is easy to compute h(x)
 Given h(x), it is hard to compute x
 It is hard to find two values x and y such that h(x)
= h(y), but x ≠ y.

The system proceeds as follows:

Alice (the client) remembers a password. Bob (the
server that will authenticate Alice) has a database
where it stores, for each user:

• The username
• n, an integer which decrements each time Bob

authenticates the user
• hn(p), i.e. h(h(…(h(p))…))

Where h is a one way hash function like MD5 and p

is the user password. Note that none of the stored
quantities is considered to be security sensitive. Hence
the system is suitable for authentication in scenarios
where the server (or the host) is either considered to be
untrusted or is vulnerable to compromise.

For system initialization, Alice chooses a password
p and n, the number of times she wants to authenticate
to Bob. She then computes n iterations of the one way
hash function over this password, i.e. hn(p). Alice then
somehow securely sends n and hn(p) along with her
username to Bob to initialize the system.

For authentication, Alice sends her username to Bob
which in turn sends n. Then Alice computes hn-1(p) and
sends the result to Bob as the next one time password
(OTP). Bob calculates the hash of the received OTP
and compares it with the stored hn(p). If they match,
Bob overwrites hn(p) with the received hn-1(p) and

decrements n. Alice is now logged in. It is easy to see
that the system is secure against both eavesdropping
and server database compromise since the attacker
cannot determine hn-1(p) from hn(p) (this follows from
the non-invertibility of h). When n reaches 1, Alice
should select a new password and should reinitialize
the system as described before. There is no known
secure way of automatic re-initialization and it should
be done through manual or physical means. Thus, this
is an inconvenience for the user.

2.1. Limitations of Lamport Hashes

Lamport Hashes use the principle of Hash chains.
Hash chains have interesting public key cryptography
like properties and have been widely used to replace /
complement public key cryptography e.g. password
based authentication [1], certificate revocation [6],
micropayments [11], online auctions [10], secure logs
[12], efficient multicasting [7-9] and server-supported
signatures [14, 15].

 Lamport hashes use hash chains attempting to
replace public key cryptography in password based
authentication. They, however, suffer from some
serious limitations:

1) As discussed before, n, the number of times a

user can authenticate to the server, is finite (see 2
for why n cannot be made very large). Further,
Alice is forced to choose a new password every
time n reaches 1 and the system should be
reinitialized. The old password cannot be reused
again. This user unfriendly requirement may not
be desirable in many environments.

2) The system is computationally intensive for the

client especially when n is large. For example,
with n=500, the client should compute 499 hash
functions (i.e. h499(p)) for authenticating first
time, 498 for second time and so on. Hence with
n=500, the client should compute about 250 hash
functions per authentication on an average.
Clearly, the scheme is unsuitable for mobile
devices having low computational resources.

Despite these limitations, being the only symmetric

key password based authentication system to resist
eavesdropping as well as password file compromise,
Lamport hashes is implemented, standardized and is
widely used [2, 3, 4, 5, 13].

3. The Proposed Construction

Now we proceed to describe the proposed
construction for the authentication system. The basic
idea as discussed before is to repeatedly require the
insertion of user password after a fixed distance in the
hash chain. The links at which the insertion of the
password is required may be made public and stored at
the host (server). The host would then transfer one of
those links to the user for aiding the computation of the
user. This results in a significant decline in the
computational requirement of the user.

3.1 The System Description

We define two system parameters, N and R. N is the
maximum number of times the user might possibly
authenticate using this scheme before re-registration is
required; and  /N R is the distance (or number of
links) in the hash chain after which password insertion
is required. Note that  /N R also represents the
maximum number of hashing operations that the user
may be required to do for authentication at any point in
time. Further, R represents the storage required at the
host H. The selection of the right values N and R calls
for requirement analysis and is a tradeoff between
computation and storage.

We now consider the case when the user U sets up
an account with the host H for the first time. U sends a
desired user name and H returns with the pair (N, R).
Then U selects a password p and computes the
following function

Иi(N - N%R)/R(p)

for every integer i (1≤ i ≤ R). In addition, U also

computes ИN(p).
The function Иx(p) is defined by the following

recurrence relation

Иk+1(p) = h(Иk(p) + δ*p)
where δ = 1 for k = i(N-N%R)/R
 = 0 for k ≠ i(N-N%R)/R
and, И0(p) = p

User U then sends all these computed components

i.e. Иi(N - N%R)/R(p) for i (1≤ i ≤ R) and ИN(p) to the
host H which stores them in its database for future
authentication sessions. Thus, note that H stores R hash
function values in its database for aiding the user
computation during future authentication sessions.

Simplified Equations

The above description is the generalized form of the
system when R may not be a multiple of N. However,
if N is a multiple of R, the equations simplify. In this

case U sends a desired user name and H returns with a
pair (N, R). Then U selects a password p and computes

ИiN/R(p)

for every integer i (1≤ i ≤ R)
The function Иx(p) is defined by the following

recurrence relation

Иk+1(p) = h(Иk(p) + δ*p)
where δ = 1 for k = iN/R
 = 0 for k ≠ iN/R
and, И0(p) = p

User U then sends these R computed values to the

host H which stores them in its database for future
authentication sessions.

An important security property of the system is that
for all values of k where Иk(p) is sent to the host, δ
would be equal to 1, i.e. Иk+1(p) would not be
computable without the knowledge of password p.
Recall that Иk-1(p) is never computable from Иk(p) due
to the non-invertibility of the hash function used.
Hence, all the values sent to the server are non-security
sensitive.

The generalized equations are just provided for the
sake of completeness. This is because since N and R
are user selected parameters, she can always select
them in such a way that N is a multiple of R. Hence,
for all further discussions, we take this simplified case
to avoid confusion. However, unless otherwise stated,
the discussion will also apply to the generalized case.

Authentication of the user U

Suppose that U wishes to authenticate herself to
host H for the tth time. The process operates as follows.

1. The user U identifies herself to the remote host H

by login name.

2. H sends the following pair of values to U

(n , Иk(p))
where n = (N-t)%R with n ≠ 0 and k = N-t-n

For values of t for which n = 0, H simply
increments t by one and does the calculation again.
This happens when t is a multiple of R. This case
requires no computation by U and therefore can be
easily exploited.

3. U calculates Иk+n(p) and sends it back to H as a one
time password.

From the password equation, this is equal to
hn(Иk(p) + p)

It should be noted here that during every login
the knowledge of p is required and p is never
transferred as plaintext.

4. H takes this value Иk+n(p) and hashes it R-n times
and then matches it with Иk+R(p) that is there in the
database with H. The authentication succeeds if the
value matches. Alternatively, a better method is to
have H store the last one time password. In that
case, H just needs to hash the received one time
password and compare with the stored one.

5. Next time U wants to access the system, she will be

prompted with values for t+1.

Figure 1: Architecture of the proposed protocol

An instance of the authentication session is given
below for N = 1000, R = 100 and t = 348.

1. The user U identifies herself to the remote host H

by login name.

2. H sends the following pair of values to U

(52 , И600(p))
 since n = (1000-348)%100 => n = 52.
 k = 1000-348-52 => k = 600.

3. U calculates И652(p) and sends it back to H as a

one time password. From the password equation,
this is equal to

h52(И600(p) + p)

4. H takes this value И652(p) and hashes it once. H
now compares the obtained value with the last one
time password stored in its database i.e. with
И653(p). The authentication succeeds if the value
matches. H replaces the stored last one time
password i.e. И653(p) with the sent И652(p).

5. Next time U wants to access the system, she will

be prompted with values for 349.

 Resistance to

eavesdropping
Resistance
to server

compromise

Number of
authentications

before re-
initialization

Client
computational
requirements

Suitable
for

mobile
clients?

Resistance
to DoS
attacks

Lamport’s
System

Yes Yes Low High No Yes

Proposed
System

Yes Yes High Low Yes Yes

Table 1 An objective Comparison of the Proposed System with Lamport’s System

3.2 Discussion and Analysis

Architecture of the proposed scheme is depicted in
Figure 1. We now consider practical aspects of the
scheme. A major improvement over the previous
methods [1, 2, and 13] is the significant reduction in
computational requirements per authentication session
and increase in the number of logins before re-
initialization.

3.2.1 Choices of N and R

We now consider how N and R should be chosen. N
is the number of times that the user U might
authenticate before re-registration is required. This
suggests that high values of N are desirable.

The host H has to store R hash function values at
the server. This implies that to reduce the storage
requirements, it is desirable to have a low value of R.
However, N/2R is the average number of hash function
computations that U has to do for every authentication
session. Thus, it is desirable to have a high value of R.
The parameter R therefore represents a tradeoff
between computational requirements of the user U and
the storage requirements of the host H. This implies
that the value of N and R are best selected by the
system administrator keeping in mind the system
requirements. We believe that given the current state of
storage technologies, the storage requirement is
significantly less important than the computational
requirement. For N = 10,000, even if N/R is kept equal
to 10, i.e., the host is required to store 1000 hash
function outputs which are commonly of 128 bits (16
bytes) each, even an ordinary hard disk drive of 20
Gigabytes is enough for supporting more than a million
users. It is worthwhile to remark here that today; even
personal computers have more storage than 20 GB.

Thus for N=10,000 and R=1000, a user U is
required to compute N/2R = 5 hash functions per
authentication session. Considering that U logs in 3
times a day, the system would last for about 10 years
before a re-registration is required.

3.2.2 Complexity

We start by considering the storage, computation
and communication complexity of the scheme.

• Storage: the requirements for the host are to store

R hash values, the last one time password and one
integer t that accounts for the number of logins
done till date. An obvious optimization that may
reduce the storage to about half on an average is to
delete the used up hash values that would never be
required again. As with all password based
authentication systems, the user U is not required to
store anything; all he needs to do is remember a
password p that he will use for all authentications.

• Computation: the host verifies the one time

password sent by user by computing just a single
hash function and one comparison with the stored
last one time password. The user is required to do
N/2R hash function computations on an average for
authentication. At no point in time does the number
of hashes computed exceed N/R.

• Communication: the host sends the user a hash

value and an integer t. The user returns only a
single hash value.

We summarize the comparison of the proposed one

time password system with the Lamport’s system in
Table 1.

4. Conclusion and Future Work

The N/R One-Time password system seems to be
effective and easy to deploy. It requires very low
computing power available with almost all computing
devices. The system was specifically designed keeping
in mind the mobile devices with constrained
computing and communication capacity. The system
overcomes the limitations of the previous one time

password systems by significantly reducing the client
side computing requirements. This is done by a
introducing a hash chain whose links are computed in
such a way that a set of the links is not security
sensitive and thus can be stored at the host. One of
these links is supplied by the host to the user aiding in
the one time password computation of the user.

We believe that our construction of hash chains may
be of independent interest. Given the large number of
systems in which hash chains are deployed, we believe
that our construction should also be usable in other
environments apart from one time passwords.

References

[1] L. Lamport, “Password Authentication with Insecure
Communication”, Communications of the ACM 24.11
(November 1981), pp 770-772.

[2] N Haller, "The S/KEY One-Time Password System",
Proceedings of the ISOC Symposium on Network and
Distributed System Security, pp 151-157, February 1994.

[3] N. Haller, “The S/KEY One-Time Password System”,
RFC 1760, February 1995. Available from
http://www.ietf.org.

[4] N Haller, “A One-Time Password System”, RFC 1938,
May 1996. Available from http://www.ietf.org.

[5] N Haller, C. Metz, P. Nesser and M. Straw, “A One-
Time Password System”, RFC 2289, Feb 1998. Available
from http://www.ietf.org.

[6] S. Micali, "Eficient Certificate Revocation," Proceedings
of RSA '97, and U.S. Patent No. 5,666,416.

[7] A. Perrig, R. Canetti, D. Song, and D. Tygar, "Eficient
and Secure Source Authentication for Multicast,"

Proceedings of Network and Distributed System Security
Symposium NDSS 2001, February 2001.

[8] A. Perrig, R. Canetti, D. Song, and D. Tygar, "Eficient
Authentication and Signing of Multicast Streams over Lossy
Channels," Proc. of IEEE Security and Privacy Symposium S
& P 2000, May 2000.

[9] A. Perrig, R. Canetti, D. Song, and D. Tygar, "TESLA:
Multicast Source Authentication Transform", Proposed IRTF
draft, http://paris.cs.berkeley.edu/ ~perrig/

[10] S. Stubblebine and P. Syverson, "Fair On-line Auctions
Without Special Trusted Parties," Financial Cryptography
'01.

[11] R. L. Rivest and A. Shamir. PayWord and MicroMint-
two simple micropayment schemes. In Mark Lomas, editor,
Proceedings of 1996 International Workshop on Security
Protocols, volume 1189, Lecture Notes in Computer Science,
pages 69-87. Springer, 1997.

[12] B. Schneier and J. Kelsey, “Cryptographic support for
secure logs on untrusted machines”, In Proceedings 7th
USENIX Security Symposium (San Antonio, Texas), Jan
1998.

[13] D.L. McDonald, R.J. Atkinson, C. Metz "One-Time
Passwords in Everything (OPIE): Experiences with Building
and Using Strong Authentication," In Proc. of the 5th
USENIX UNIX Security Symposium, June 1995.

[14] N.Asokan, G.Tsudik and M.Waidners, “Server-
supported signatures”, Journal of Computer Security,
November 1997.

[15] X. Ding, D.Mazzocchi and G.Tsudik. Experimenting
with Server-Aided Signatures, Network and Distributed
Systems Security Symposium (NDSS ’02), February 2002.

