
9

Nature Inspired Meta-heuristics for Grid
Scheduling: Single and Multi-objective
Optimization Approaches

Ajith Abraham1, Hongbo Liu2,3, Crina Grosan4, and Fatos Xhafa5

1 Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
ajith.abraham@ieee.org
http://www.softcomputing.net

2 School of Computer Science and Engineering, Dalian Maritime University,
116026 Dalian, China

3 Department of Computer, Dalian University of Technology, 116023 Dalian, China
lhb@dlut.edu.cn

4 Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş Bolyai University, Kogalniceanu 1, Cluj-Napoca, 3400, Romania
cgrosan@cs.ubbcluj.ro

5 Dept. de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu

Summary. In this chapter, we introduce several nature inspired meta-heuristics for
scheduling jobs on computational grids. Our approach is to dynamically generate an
optimal schedule so as to complete the tasks in a minimum period of time as well
as utilizing the resources in an efficient way. We evaluate the performance of Genetic
Algorithm (GA), Simulated Annealing (SA), Ant Colony optimization (ACO) and
Particle Swarm Optimization (PSO) Algorithm. Finally, the usage of Multi-objective
Evolutionary Algorithm (MOEA) for two scheduling problems are also illustrated.

Keywords: Nature Inspired Meta-heuristics, Multi-objective Optimization, Job
Scheduling, Grid Computing, Genetic Algorithms, Simulated Annealing, Ant Colony,
Particle Swarm Optimization.

9.1 Introduction

A computational grid is a large scale, heterogeneous collection of autonomous
systems, geographically distributed and interconnected by low latency and high
bandwidth networks [1]. The sharing of computational jobs is a major applica-
tion of grids. Grid resource management provides functionality for discovery and
publishing of resources as well as scheduling, submission and monitoring of jobs.
However, computing resources are geographically distributed under different own-
erships each having their own access policy, cost and various constraints. Every

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 247–272, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

248 A. Abraham et al.

resource owners will have a unique way of managing and scheduling resources and
the grid schedulers are to ensure that they do not conflict with resource owner’s
policies. In the worst-case situation, the resource owners might charge different
prices to different grid users for their resource usage and it might vary from time
to time. The job schedule problem is known to be NP-complete [2]. Recently sev-
eral metaheuristics were introduced to minimize the average completion time of
jobs through optimal job allocation on each grid node in application-level schedul-
ing [3], [4]. Because of the intractable nature of the problem and its importance
in grid computing, it is desirable to explore other avenues for developing good
heuristic algorithms for the problem.

Particularly, with its sound exploration ability both global and local, some new
search techniques, nature inspired meta-heuristics, has become the new focus of
research. In this chapter, we introduce several nature inspired meta-heuristics
for scheduling jobs on computational grids. The nature inspired meta-heuristics
involved are Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony
optimization (ACO) and Particle Swarm Optimization (PSO) Algorithm. The
PSO approach for scheduling jobs on computational grids is based on fuzzy
matrices to represent the position and velocity of the particles in PSO [5], in
which a new mapping between the job scheduling problem and the particle is
constructed [13]. The approach is to dynamically generate an optimal schedule
so as to complete the tasks in a minimum period of time as well as utilizing
the resources in an efficient way. We also illustrate the use of Multi-objective
evolutionary algorithms for job scheduling [7].

The Chapter is organized as follows. Section 2 deals with some theoretical
foundations related to job scheduling. Various nature inspired heuristics are
introduced in Section 3. In Section 4, experiment results and discussions are
provided. Finally, we conclude our work.

9.2 Scheduling Problem Formulation

In the grid environment, there is usually a general framework focusing on the
interaction between grid resource broker, domain resource manager and the grid
information server [8]. Usually it is easy for the grid to get information about
the speed of the available grid nodes but quite complicated to know the com-
putational processing time requirements from the user. To conceptualize the
problem as an algorithm, we need to dynamically estimate the job lengths from
user application specifications or historical data. For clarity purposes, some key
terminologies are defined as follows:

• Grid Node (computing unit)
Grid node is a set of computational resources with limited capacities. It may
be a simple personal machine, a workstation, a super-computer, or a cluster
of workstations in the grid environment. The computational capacity of the
node depends on its number of CPUs, amount of memory, basic storage space
and other specializations. In other words, each node has its own processing
speed, which can be expressed in number of Cycles Per Unit Time (CPUT).

9 Nature Inspired Meta-heuristics for Grid Scheduling 249

• Jobs and Operations
A job is considered as a single set of multiple atomic operations/tasks. Each
operation will be typically allocated to execute on one single node without
preemption. It has input and output data, and processing requirements in
order to complete its task. The operation has the processing length expressed
in number of cycles.

• Schedule and Scheduling Problem
A schedule is the mapping of the tasks to specific time intervals of Grid
nodes. A scheduling problem is specified by a set of machines, a set of job-
s/operations, optimality criteria, environmental specifications, and by other
constraints.

To formulate the problem, we consider Jj (j ∈ {1, 2, · · · , n}) independent
user jobs on Gi (i ∈ {1, 2, · · · , m}) heterogeneous grid nodes with an objective
of minimizing the completion time and utilizing the nodes effectively. The speed
of each node is expressed in number of CPUT, and the length of each job in
number of cycles. Each job Jj has its processing requirement (cycles) and the
node Gi has its calculating speed (cycles/second). Any job Jj has to be processed
in the one of grid nodes Gi, until completion. Since all nodes at each stage are
identical and preemptions are not allowed, to define a schedule it suffices to
specify the completion time for all tasks comprising each job.

To formulate our objective, define Ci,j (i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n})
as the completion time that the grid node Gi finishes the job Jj ,

∑
Ci represents

the time that the grid node Gi finishes all the jobs scheduling to itself. Define
Cmax = max{

∑
Ci} as the makespan, and

∑m
i=1(

∑
Ci) as the flowtime.

An optimal schedule will be the one that optimizes the flowtime and makespan.
The conceptually obvious rule to minimize

∑m
i=1(

∑
Ci) is to schedule Shortest

Job on the Fastest Node (SJFN). The simplest rule to minimize Cmax is to
schedule the Longest Job on the Fastest Node (LJFN). Minimizing

∑m
i=1(

∑
Ci)

asks the average job finishes quickly, at the expense of the largest job taking
a long time, whereas minimizing Cmax, asks that no job takes too long, at the
expense of most jobs taking a long time. Minimization of Cmax will result in
maximization of

∑m
i=1(

∑
Ci).

9.3 Nature Inspired Meta-heuristics

Combinatorial optimizationproblems are important in many real life applications
and recently, the area has attracted much research with the advances in nature in-
spired heuristics and multi-agent systems. For scheduling problems, the dramatic
increase in the size of the search space and the need for real-time solutions moti-
vated research ideas into solving scheduling problems using nature inspired heuris-
tic techniques. In this Chapter, we included evolutionary algorithms, simulated
annealing, ant colony optimization and particle swarm optimization algorithm.
The generic pseudo-code for the algorithms is illustrated in Algorithm 9.1.

250 A. Abraham et al.

Algorithm 9.1. General Description for Nature Inspired Algorithm
01. Initialize the solution vectors randomly and other parameters.
02. Evaluate the candidate solution(s);
03. Repeat
04. Generate new candidate solutions following the nature or social behaviors;
05. Evaluate the candidate solution;
06. Until terminating criteria.

The termination criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated after
a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is ter-
minated after some fixed number of iterations without any improvement.

• Minimum objective function error: the error between the obtained objective
function value and the best fitness value is less than a pre-fixed anticipated
threshold.

• Cost threshold: allocated budget (computation time/cost) reached.
• Manual inspection: the process is executed by human-computer interactively.
• Combinations of the above.

9.3.1 Evolutionary Algorithms

In nature, evolution is mostly determined by natural selection, where individuals
that are better are more likely to survive and propagate their genetic material.
The encoding of genetic information (genome) is done in a way that admits
asexual reproduction which results in offspring’s that are genetically identical to
the parent. Sexual reproduction allows some exchange and re-ordering of chro-
mosomes, producing offspring that contain a combination of information from
each parent. This is the recombination operation, which is often referred to
as crossover because of the way strands of chromosomes crossover during the
exchange. Diversity in the population is achieved by mutation. A typical evolu-
tionary (genetic) algorithm procedure takes the following steps: A population of
candidate solutions (for the optimization task to be solved) is initialized. New

Algorithm 9.2. Evolutionary Algorithm
01. Initialize the population randomly, and other parameters.
02. Evaluate the fitness of each individual in the population.
03. Repeat
04. Select best-ranking individuals to reproduce;
05. Breed new generation through crossover operator and give birth to offspring;
06. Breed new generation through mutation operator and give birth to offspring;
07. Evaluate the individual fitness of the offspring;
08. Replace worst ranked part of population with offspring;
09. Until terminating criteria.

9 Nature Inspired Meta-heuristics for Grid Scheduling 251

solutions are created by applying genetic operators (mutation and/or crossover).
The fitness (how good the solutions are) of the resulting solutions are evaluated
and suitable selection strategy is then applied to determine which solutions will
be maintained into the next generation. The procedure is then iterated [9]. A
canonical version of the pseudo-code for the evolutionary algorithm is illustrated
in Algorithm 9.2.

9.3.2 Evolutionary Multi-objective Optimization

Even though some real world problems can be reduced to a matter of single ob-
jective very often it is hard to define all the aspects in terms of a single objective.
Defining multiple objectives often gives a better idea of the task. In single ob-
jective optimization, the search space is often well defined. As soon as there are
several possibly contradicting objectives to be optimized simultaneously, there is
no longer a single optimal solution but rather a whole set of possible solutions of
equivalent quality. When we try to optimize several objectives at the same time
the search space also becomes partially ordered. To obtain the optimal solution,
there will be a set of optimal trade-offs between the conflicting objectives. A
multiobjective optimization problem is defined by a function f which maps a set
of constraint variables to a set of objective values.

A solution could be best, worst and also indifferent to other solutions (neither
dominating or dominated) with respect to the objective values. Best solution
means a solution not worst in any of the objectives and at least better in one
objective than the other. An optimal solution is the solution that is not dom-
inated by any other solution in the search space. Such an optimal solution is
called Pareto optimal and the entire set of such optimal trade-offs solutions is
called Pareto optimal set. As evident, in a real world situation a decision making
(trade-off) process is required to obtain the optimal solution. Even though there
are several ways to approach a multiobjective optimization problem, most work
is concentrated on the approximation of the Pareto set.

Evolutionary algorithm is characterized by a population of solution candi-
dates and the reproduction process enables to combine existing solutions to gen-
erate new solutions. Finally, natural selection determines which individuals of
the current population participate in the new population. Multi-objective Evolu-
tionary Algorithms (MOEA) can yield a whole set of potential solutions, which
are all optimal in some sense. After the first pioneering work on multiobjective
evolutionary optimization in the eighties [10], several different algorithms have
been proposed and successfully applied to various problems. For comprehensive
overviews and discussions, the reader is referred to [11].

9.3.3 Simulated Annealing

Simulated Annealing (SA) exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure (the annealing
process) and the search for a minimum in a more general system. SA’s major
advantage over other methods is an ability to avoid becoming trapped at local

252 A. Abraham et al.

minima [12]. The annealing schedule, i.e., the temperature-decreasing rate used
in SA is an important factor, which affects SA’s rate of convergence. The algo-
rithm employs a random search, which not only accepts changes that decrease
objective function “f”, but also some changes that increase it. The latter are
accepted with a probability p = exp

(
− δf

T

)
, where δf is the increase in objec-

tive function, and “f” and T are control parameters. Several SAs have been
developed with annealing schedule inversely linear in time (Fast SA), exponen-
tial function of time (Very Fast SA) etc. We explain a SA algorithm [13], which
is exponentially faster than Very Fast SA whose annealing schedule is given
by T (k) = T0

exp(ek) , where T0is the initial temperature, T (k) is the temperature
we wish to approach to zero for k = 1, 2, If the generation function of the
simulated annealing algorithm is represented as:

gk(Z) =
D∏

i=1

gk(zi) =
D∏

i=1

1
2(|zi| + 1

ln(1/Ti(k))) ln (1 + ln(1/T i(k)))
(9.1)

where Ti(k)is the temperature in dimension i at time k. The generation proba-
bility will be represented by

Gk(Z) =
∫ z1

−1

∫ z2

−1
.....

∫ zD

−1
gk(Z)dz1dz2....dzD =

D∏

i=1

Gki(zi) (9.2)

where Gki(zi) = 1
2 + sgn(zi) ln(1+|zi| ln(1/Ti(k)))

2 ln(1+ln(1/Ti(k)))

It is straightforward to prove that an annealing schedule for

Ti(k) = T0i exp(− exp(bik
1/D)) (9.3)

A global minimum, statistically, can be obtained. That is,
∞∑

k=ko

gk = ∞ (9.4)

Algorithm 9.3. Simulated Annealing
01. Set initial temperature T0, and other parameters.
02. Initialize the solution vectors randomly.
03. Repeat
04. Counter = 0;
05. Repeat
06. Evaluate the candidate solution;
07. Generate a neighbor and evaluate the cost of the neighbor solution;
08. Accept or reject the neighbor with a probability p;
09. Counter++;
10. Until (Counter = Number of Iterations at Ti);
11. Ti+1 = c ∗ Ti (temperature reduction);
12. Until terminating criteria.

9 Nature Inspired Meta-heuristics for Grid Scheduling 253

where bi > 0 is a constant parameter and k0 is a sufficiently large constant to
satisfy Eq.(9.4), if the generation function in Eq.(9.1) is adopted. The pseudo-
code for simulated annealing is illustrated in Algorithm 9.3.

9.3.4 Ant Colony Optimization

In nature, ants usually wander randomly, and upon finding food return to
their nest while laying down pheromone trails. If other ants find such a path
(pheromone trail), they are likely not to keep traveling at random, but to in-
stead follow the trail, returning and reinforcing it if they eventually find food.
However, as time passes, the pheromone starts to evaporate. The more time it
takes for an ant to travel down the path and back again, the more time the
pheromone has to evaporate (and the path to become less prominent). A shorter
path, in comparison will be visited by more ants (can be described as a loop
of positive feedback) and thus the pheromone density remains high for a longer
time.

ACO is implemented as a team of intelligent agents which simulate the ants
behavior, walking around the graph representing the problem to solve using
mechanisms of cooperation and adaptation. ACO algorithm requires to define
the following [14], [15]:

• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilistic
transition rules, based on the amount of pheromone in the trail and other
problem specific knowledge. It is also important to enforce a strategy to
construct only valid solutions corresponding to the problem definition.

• A problem-dependent heuristic function η that measures the quality of com-
ponents that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the
pheromone value τ .

• A probabilistic transition rule based on the value of the heuristic function η
and the pheromone value τ that is used to iteratively construct a solution.

ACO was first introduced using the Traveling Salesman Problem (TSP). Start-
ing from its start node, an ant iteratively moves from one node to another. When
being at a node, an ant chooses to go to a unvisited node at time t with a prob-
ability given by

pk
i,j(t) =

[τi,j(t)]α[ηi,j(t)]β∑
l∈Nk

i
[τi,j(t)]α[ηi,j(t)]β

j ∈ Nk
i (9.5)

where Nk
i is the feasible neighborhood of the antk, that is, the set of cities which

antk has not yet visited; τi,j(t) is the pheromone value on the edge (i, j) at the
time t, α is the weight of pheromone; ηi,j(t) is a priori available heuristic infor-
mation on the edge (i, j) at the time t, β is the weight of heuristic information.
Two parameters α and β determine the relative influence of pheromone trail and
heuristic information. τi,j(t) is determined by

254 A. Abraham et al.

τi,j(t) = ρτi,j(t − 1) +
n∑

k=1

Δτk
i,j(t) ∀(i, j) (9.6)

Δτk
i,j(t) =

{
Q

Lk(t) if the edge (i, j) chosen by the antk

0 otherwise
(9.7)

where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the number of
ants, Q is a constant for pheromone updating.

Reader is advised to consult [16], [17], [15] for more technical details and
other applications of ACO. A generalized version of the pseudo-code for the
ACO algorithm with reference to the TSP is illustrated in Algorithm 9.4.

Algorithm 9.4. Ant Colony Optimization Algorithm
01. Initialize the number of ants n, and other parameters.
02. Repeat
03. t + +;
04. For k= 1 to n
05. antk is positioned on a starting node;
06. For m= 2 to problem size
07. Choose the state to move into
07. according to the probabilistic transition rules;
08. Append the chosen move into tabuk(t) for the antk;
09. Next m
10. Compute the length Lk(t) of the tour Tk(t) chosen by the antk;
11. Compute Δτi,j(t) for every edge (i, j) in Tk(t) according to Eq.(9.7);
12. Next k
13. Update the trail pheromone intensity for every edge (i, j) according to Eq.(9.6);
14. Compare and update the best solution;
15. Until terminating criteria.

9.3.5 Particle Swarm Optimization

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarming
behaviors observed in flocks of birds, schools of fish, or swarms of bees, and even
human social behavior, from which the Swarm Intelligence (SI) paradigm has
emerged [11], [12]. It could be implemented and applied easily to solve various
function optimization problems, or the problems that can be transformed to
function optimization problems.

As an algorithm, its main strength is its fast convergence, which compares
favorably with many global optimization algorithms [9], [12]. The canonical PSO
model consists of a swarm of particles, which are initialized with a population
of random candidate solutions. They move iteratively through the d-dimension
problem space to search the new solutions, where the fitness, f , can be calculated
as the certain qualities measure.

9 Nature Inspired Meta-heuristics for Grid Scheduling 255

Each particle has a position represented by a position-vector xi (i is the index
of the particle), and a velocity represented by a velocity-vector vi. Each particle
remembers its own best position so far in a vector x#

i , and its j-th dimensional
value is x#

ij . The best position-vector among the swarm so far is then stored
in a vector x∗, and its j-th dimensional value is x∗

j . During the iteration time
t, the update of the velocity from the previous velocity to the new velocity is
determined by Eq.(9.8). The new position is then determined by the sum of the
previous position and the new velocity by Eq.(9.9).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗

j (t) − xij(t)). (9.8)

xij(t + 1) = xij(t) + vij(t + 1). (9.9)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1 is
a positive constant, called as coefficient of the self-recognition component, c2 is
a positive constant, called as coefficient of the social component.

From Eq.(9.8), a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience
of its most successful particle in the swarm. In the particle swarm model, the
particle searches the solutions in the problem space with a range [−s, s] (If the
range is not symmetrical, it can be translated to the corresponding symmetrical
range.) In order to guide the particles effectively in the search space, the max-
imum moving distance during one iteration must be clamped in between the
maximum velocity [−vmax, vmax] given in Eq.(9.10):

vij = sign(vij)min(|vij | , vmax). (9.10)

xi,j = sign(xi,j)min(|xi,j | , xmax). (9.11)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be s, i.e.
p = 1. The pseudo-code for particle swarm optimization algorithm is illustrated
in Algorithm 9.5.

The role of inertia weight w, in Eq.(9.8), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact of
the previous history of velocities on the current one. Accordingly, the parameter
w regulates the trade-off between the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A large inertia weight facilitates global explo-
ration (searching new areas), while a small one tends to facilitate local explo-
ration, i.e. fine-tuning the current search area. A suitable value for the inertia
weight w usually provides balance between global and local exploration abilities
and consequently results in a reduction of the number of iterations required to
locate the optimum solution. Initially, the inertia weight is set as a constant.
However, some experiment results indicates that it is better to initially set the
inertia to a large value, in order to promote global exploration of the search
space, and gradually decrease it to get more refined solutions [20], [21]. Thus, an

256 A. Abraham et al.

Algorithm 9.5. Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Repeat
04. t + +;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(9.8), (9.9), (9.10), (9.11);
12. Next j
13. Next i
14. Until terminating criteria.

initial value around 1.2 and gradually reducing towards 0 can be considered as
a good choice for w. A better method is to use some adaptive approaches (ex-
ample: fuzzy controller), in which the parameters can be adaptively fine tuned
according to the problem under consideration [22], [16].

The parameters c1 and c2, in Eq.(9.8), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and alle-
viation of local minima. As default values, usually, c1 = c2 = 2 are used, but
some experiment results indicate that c1 = c2 = 1.49 might provide even bet-
ter results. Recent work reports that it might be even better to choose a larger
cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤ 4 [23].

The particle swarm algorithm can be described generally as a population of
vectors whose trajectories oscillate around a region which is defined by each in-
dividual’s previous best success and the success of some other particle. Various
methods have been used to identify some other particle to influence the indi-
vidual. Eberhart and Kennedy called the two basic methods as “gbest model”
and “lbest model” [11]. In the lbest model, particles have information only of
their own and their nearest array neighbors’ best (lbest), rather than that of the
entire group.

In the gbest model, the trajectory for each particle’s search is influenced
by the best point found by any member of the entire population. The best
particle acts as an attractor, pulling all the particles towards it. Eventually all
particles will converge to this position. The lbest model allows each individual
to be influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood.

Typically lbest neighborhoods comprise exactly two neighbors. When the
number of neighbors increases to all but itself in the lbest model, the case is
equivalent to the gbest model. Some experiment results testified that gbest model
converges quickly on problem solutions but has a weakness for becoming trapped

9 Nature Inspired Meta-heuristics for Grid Scheduling 257

in local optima, while lbest model converges slowly on problem solutions but is
able to “flow around” local optima, as the individuals explore different regions.
The gbest model has faster convergence. But very often for multi-modal prob-
lems involving high dimensions it tends to suffer from premature convergence.

9.3.6 A Fuzzy Scheme Based on Particle Swarm Optimization

In this section, we design a fuzzy scheme based on discrete particle swarm op-
timization to solve the job scheduling problem on computational grids. The
vectors to fuzzy matrices are extended to represent the position and velocity of
the particles for computational grid job scheduling.

Suppose G = {G1, G2, · · · , Gm}, J = {J1, J2, · · · , Jn}, then the fuzzy schedul-
ing relation from G to J can be expressed as follows:

S =

⎡

⎢
⎢
⎢
⎣

s11 s12 · · · s1n

s21 s22 · · · s2n

...
...

. . .
...

sm1 sm2 · · · smn

⎤

⎥
⎥
⎥
⎦

Here sij represents the degree of membership of the i-th element Gi in domain
G and the j-th element Jj in domain J to relation S. The fuzzy relation S
between G and J has the following meaning: for each element in the matrix S,
the element

sij = μR(Gi, Jj), i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.12)

μR is the membership function, the value of sij means the degree of membership
that the grid node Gj would process the job Ji in the feasible schedule solution.
In the grid job scheduling problem, the elements of the solution must satisfy the
following conditions:

sij ∈ [0, 1], i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.13)

m∑

i=1

sij = 1, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.14)

For applying PSO successfully, one of the key issues is finding how to map the
the problem solution into the PSO particle, which directly affects its feasibility
and performance. We assume that the jobs and grid nodes are arranged in an
ascending order according to the job lengths and the node processing speeds.
The information related job lengths may be derived from historical data, some
kind of strategy defined by the user or through load profiling.

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦

258 A. Abraham et al.

Accordingly, the elements of the matrix X must satisfy the following condi-
tions:

xij ∈ [0, 1], i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.15)

m∑

i=1

xij = 1, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.16)

We define similarly the velocity of the particle as:

V =

⎡

⎢
⎢
⎢
⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤

⎥
⎥
⎥
⎦

The symbol “⊗” is used to denote the modified multiplication. Let α be a
real number, α ⊗ V or α ⊗ X means all the elements in the matrix V or X
are multiplied by α. The symbol “⊕” and symbol “�” denote the addition and
subtraction between matrices respectively. Suppose A and B are two matrices
which denote position or velocity, then A ⊕ B and A � B are regular addition
and subtraction operation between matrices.

Then we get the equations (9.8) and (9.9) for updating the positions and
velocities of the particles in the fuzzy discrete PSO:

V (t+1) = w⊗V (t)⊕(c1∗r1)⊗X#(t)�X(t))⊕(c2 ∗r2)⊗(X∗(t)�X(t)). (9.17)

X(t + 1) = X(t) ⊕ V (t + 1)). (9.18)

The position matrix may violate the constraints (9.15) and (9.16) after some
iterations, so it is necessary to normalize the position matrix. First we make all
the negative elements in the matrix become zero. If all elements in a column of
the matrix are zero, they need be re-evaluated using a series of random numbers
with the interval [0,1]. Then the matrix undergoes the following transformation
without violating the constraints:

Xnormal =

⎡

⎢
⎢
⎢
⎣

x11/
∑m

i=1 xi1 x12/
∑m

i=1 xi2 · · · x1n/
∑m

i=1 xin

x21/
∑m

i=1 xi1 x22/
∑m

i=1 xi2 · · · x2n/
∑m

i=1 xin

...
...

. . .
...

xm1/
∑m

i=1 xi1 xm2/
∑m

i=1 xi2 · · · xmn/
∑m

i=1 xin

⎤

⎥
⎥
⎥
⎦

Since the position matrix indicates the potential scheduling solution, we should
“decode” the fuzzymatrix andget the feasible solution.Weuse aflagarray to record
whetherwehave selected the columnsof thematrix anda scheduling array to record
the scheduling solution.First all the columnsarenot selected, then for each columns
of the matrix, we choose the element which has the max value, then mark the col-
umn of the max element “selected”, and the column number are recorded to the

9 Nature Inspired Meta-heuristics for Grid Scheduling 259

scheduling array. After all the columns have been processed, we get the scheduling
solution from the scheduling array and the makespan of the scheduling solution.

To optimize the makespan and flowtime we propose to swap the usage of LJFN
and SJFN heuristic alternatively every time the new jobs are allocated to the grid
nodes. If the number of jobs is less than the number of grid nodes, we propose to
allocate the jobs based on a First-Come-First-Serve basis and LJFN heuristic (if
possible). In a grid environment, a scheduler might have to make a multi-criteria
decision analysis (access policy, access cost, resource requirements, processing
speed, etc.) for selecting an optimal solution. To formulate the algorithm, we
propose the following job lists and grid node lists. JList1 and GList1 are to
be dynamically updated through load profiling, grid node health status, and
forecasted load status, etc. along with grid information services. The entire job
and the grid node lists are to be arranged in the ascending order of the job lengths
and processing speeds/access-cost (based on multi-criteria decision analysis).
Frequency of updating the lists will very much depend on the grid condition,
availability of grid nodes and jobs.

• JList1 = Job list maintaining the list of all the jobs to be processed.
• JList2 = Job list maintaining only the list of jobs being scheduled.
• JList3 = Job list maintaining only the list of jobs already allocated (JList3 =

JList1 − JList2).
• GList1 = List of available grid nodes (including time frame).
• GList2 = List of grid nodes already allocated to jobs.
• GList3 = List of free grid nodes (GList3 = GList1 − GList2).

A scheme based on fuzzy discrete PSO for job scheduling is depicted in
Algorithm 9.6.

9.4 Experimental Illustrations

The scheduling problem is to determine both an assignment and a sequence
of the operations on all machines that minimize some criteria. The following
optimality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;
2. the sum of the completion times (flowtime): Csum.

The weighted aggregation is the most common approach to the problems.
According to this approach, the objectives, F1 = min{Cmax} and F2 =
min{Csum}, are aggregated as a weighted combination:

F = w1min{F1} + w2min{F2} (9.19)

where w1 and w2 are non-negative weights, and w1 +w2 = 1. These weights can
be either fixed or adapt dynamically during the optimization. The fixed weights,
w1 = w2 = 0.5, are used in this article. In fact, the dynamic weighted aggrega-
tion mainly takes Cmax into account [25] because Csum is commonly much larger

260 A. Abraham et al.

Algorithm 9.6. A scheduling scheme based on fuzzy discrete PSO
0 If the grid is active and (JList1 = 0) and no new jobs have been submitted, wait

for new jobs to be submitted. Otherwise, update GList1 and JList1.
1 If (GList1 = 0), wait until grid nodes are available. If JList1 > 0, update JList2.

If JList2 < GList1 allocate the jobs on a first-come-first-serve basis and if possible
allocate the longest job on the fastest grid node according to the LJFN heuristic.
If JList1 > GList1, job allocation is to be made by following the fuzzy discrete
PSO algorithm detailed below. Take jobs and available grid nodes from JList2
and GList3. If m ∗ n (m is the number of the grid nodes, n is the number of the
jobs) is larger than the dimension threshold DT , the jobs and the grid nodes are
grouped into the fuzzy discrete PSO algorithm loop, and the single node flowtime
is accumulated. The LJFN-SJFN heuristic is applied alternatively after a batch of
jobs and nodes are allocated.

2 At t = 0, represent the jobs and the nodes using fuzzy matrix.
3 Begin fuzzy discrete PSO Loop

3.0 Initialize the size of the particle swarm n and other parameters.
3.1 Initialize a random position matrix and a random velocity matrix for each particle,

and then normalize the matrices.
3.2 Repeat
3.2.0 t + +;
3.2.1 Defuzzify the position, and calculate the makespan and total flowtime for each

particle (the feasible solution);
3.2.2 X∗ =argminn

i=1(f(X∗(t−1)), f(X1(t)), f(X2(t)),· · · , f(Xi(t)), · · · , f(Xn(t)));
3.2.3 For each particle, X#

i (t) = argminn
i=1(f(X#

i (t − 1)), f(Xi(t))
3.2.4 For each particle, update each element in its position matrix and its velocity

matrix according to equations (9.17, 9.11, 9.18 and 9.10);
3.2.5 Normalize the position matrix for each particle;
3.3 Until terminating criteria.

4 End of the fuzzy discrete PSO Loop.
5 Check the feasibility of the generated schedule with respect to grid node availability

and user specified requirements. Then allocate the jobs to the grid nodes and
update JList2, JList3, GList2 and GList3. Un-allocated jobs (infeasible schedules
or grid node non-availability) shall be transferred to JList1 for re-scheduling or
dealt with separately.

6 Repeat steps 0-5 as long as the grid is active.

than Cmax and the solution has a large weight on Csum during minimization of
the objective. Alternatively, the weights can be changed gradually according to
the Eqs. (9.20) and (9.21). The changes in the dynamic weights (R = 200) are
illustrated in Fig. 9.1.

w1(t) = |sin(2πt/R)| (9.20)

w2(t) = 1 − w1(t) (9.21)

9 Nature Inspired Meta-heuristics for Grid Scheduling 261

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Iteration

w
1,

w
2

Fig. 9.1. Dynamic weight adaptation

9.4.1 Scheduling Using Fuzzy Particle Swarm Optimization
Algorithm

Since the position matrix indicates the potential scheduling solution, we choose
the element which has the max value, then tag it as “1”, and other numbers in
the column are set as “0” in the scheduling array. After all the columns have
been processed, we get the scheduling solution from the scheduling array and
the makespan (solution). In the experiments, genetic algorithm and simulated
annealing were used to compare the performance with PSO. Specific parameter
settings of all the considered algorithms are described in Table 9.1.

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50 ∗ m ∗ n iterations (m is the
number of the grid nodes, n is the number of the jobs). The makespan values
of the best solutions throughout the optimization run were recorded and the
averages and the standard deviations were calculated from the 10 different trials.
In a grid environment, the main emphasis is to generate the schedules as fast as
possible. So the completion time for 10 trials were used as one of the criteria to
improve their performance.

To illustrate, we start with a small scale job scheduling problem involving 3
nodes and 13 jobs represented as (3, 13). The node speeds are 4, 3, 2 CPUT,
and the job lengths of 13 jobs are 6, 12, 16, 20, 24, 28, 30, 36, 40, 42, 48, 52, 60
cycles, respectively.

Fig. 9.2 illustrates the performance of GA, SA and PSO algorithms. The
empirical results (makespan) for 10 GA runs were {47, 46, 47, 47.3333, 46, 47,
47, 47, 47.3333, 49}, with an average value of 47.1167. The results of 10 SA runs
were {46.5, 46.5, 46, 46,46, 46.6667, 47, 47.3333, 47, 47}with an average value
of 46.6. The results of 10 PSO runs were {46, 46, 46, 46, 46.5, 46.5, 46.5, 46,
46.5, 46.6667}, with an average value of 46.2667. The optimal result is supposed
to be 46. While GA provided the best results twice, SA and PSO provided the
best results three and five times respectively. Table 9.2 depicts one of the best
job scheduling results for (3,13), in which “1” means the job is scheduled to the
respective grid node.

262 A. Abraham et al.

Table 9.1. Parameter settings for the algorithms

Algorithm Parameter name Parameter value
Size of the population 20
Probability of crossover 0.8GA
Probability of mutation 0.02
Scale for mutations 0.1
Number operations before temperature adjustment 20
Number of cycles 10

SA Temperature reduction factor 0.85
Vector for control step of length adjustment 2
Initial temperature 50
Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

Table 9.2. An optimal schedule for (3,13)

JobGrid Node
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

G1 0 0 1 0 0 0 1 1 0 1 0 0 1
G2 1 0 0 1 1 0 0 0 1 0 1 0 0
G3 0 1 0 0 0 1 0 0 0 0 0 1 0

Table 9.3. Performance comparison between GA, PSO and SA

InstanceAlgorithm Item
(3,13) (5,100) (8,60) (10,50)

Average makespan 47.1167 85.7431 42.9270 38.0428
GA Standard Deviation ±0.7700 ±0.6217 ±0.4150 ±0.6613

Time 302.9210 2415.9 2263.0 2628.1
Average makespan 46.6000 90.7338 55.4594 41.7889

SA Standard Deviation ±0.4856 ±6.3833 ±2.0605 ±8.0773
Time 332.5000 6567.8 6094.9 6926.4
Average makespan 46.2667 84.0544 41.9489 37.6668

PSO Standard Deviation ±0.2854 ±0.5030 ±0.6944 ±0.6068
Time 106.2030 1485.6 1521.0 1585.7

Table 9.4. Run time performance comparison for large dimension problems

(G,J) PSO GA
(60,100) 1721.1 1880.6
100,1000) 3970.80 5249.80

9 Nature Inspired Meta-heuristics for Grid Scheduling 263

0 500 1000 1500 2000
46

47

48

49

50

51

52

53

54

55

Iteration

M
ak

es
p

an

GA
SA
PSO

Fig. 9.2. Performance for job scheduling (3,13)

0 0.5 1 1.5 2 2.5

x 10
4

35

40

45

50

55

60

65

Iteration

M
ak

es
p

an

GA
SA
PSO

Fig. 9.3. Performance for job scheduling (5,100)

Further, we considered the three algorithms for other three (G, J) pairs, i.e.
(5,100), (8,60) and (10,50). All the jobs and the nodes were submitted at one
time. Figs. 9.2, 9.3 illustrate the performance for GA, SA and PSO algorithms
during the search process for (3, 13), (5,100) respectively. The average makespan

264 A. Abraham et al.

0 2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

Iteration

M
ak

es
p

an

GA
PSO

Fig. 9.4. Performance for job scheduling (60,500)

0 0.5 1 1.5 2 2.5

x 10
5

0

100

200

300

400

500

600

Iteration

M
ak

es
p

an

GA
PSO

Fig. 9.5. Performance for job scheduling (100,1000)

values, the standard deviations and the time for 10 trials are illustrated in
Table 9.3. Although the average makespan value of SA was better than that of
GA for (3,13), the case was reversed for bigger problem sizes. PSO usually had
better average makespan values than the other two algorithms. The makespan

9 Nature Inspired Meta-heuristics for Grid Scheduling 265

results of SA seemed to depend on the initial solutions extremely. Although the
best values in the ten trials for SA were not worse than other algorithms, it had
larger standard deviations. For SA, there were some “bad” results in the ten tri-
als, so the averages were the largest. In general, for larger (G, J) pairs, the time
was much longer. PSO usually spent the least time to allocate all the jobs on
the grid node, GA was the second, and SA had to spent more time to complete
the scheduling. It is to be noted that PSO usually spent the shortest time to
accomplish the various job scheduling tasks and had the best results among all
the considered three algorithms.

It is possible that (G, J) is larger than the dimension threshold DT . We con-
sidered two large-dimensions of (G, J), (60, 500) and (100, 1000) by submitting
the jobs and the nodes in multi-stages consecutively. In each stage, 10 jobs were
allocated to 5 nodes, and the single node flowtime was accumulated. The LJFN-
SJFN heuristic was applied alternatively after a batch of jobs and nodes were
allocated. Figs. 9.4, 9.5 and Table 9.4 illustrate the performance of GA and
PSO during the search process for the considered (G, J) pairs. As evident, even
though the performance were close enough, PSO generated the schedules much
faster than GA as illustrated in Table 9.4.

9.4.2 Job Scheduling Using ACO

For illustration, we considered two problem instances: (3,13) and (5,100) [26].
The parameters used for GA, SA and PSO were the same as depicted in Table 9.1
and the ACO algorithm parameters are as follows:

Number of ants = 5
Weight of pheromone trail α = 1
Weight of heuristic information β = 5
Pheromone evaporation parameter ρ = 0.8
Constant for pheromone updating Q = 10

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50 ∗ m ∗ n iterations (m is
the number of the grid nodes, n is the number of the jobs). The makespan
values of the best solutions throughout the optimization run were recorded and
the averages and the standard deviations were calculated from the 10 different
trials.

Fig. 9.6 illustrates the performance of GA, SA, PSO and ACO algorithms
for (3,13). The empirical results for 10 ACO runs were {46, 46, 46, 46, 46.5,
46.5, 46.5, 46, 46, 46.5}, with an average value of 46.2667. The optimal result is
supposed to be 46. While GA provided the best results twice, SA, PSO, ACO
provided the best results three, five and six times respectively. Empirical results
are summarized in Table 9.5 for (3,13) and (5,100). As evident, ACO algorithm
seems to work well but as the problem dimensions got bigger, the computational
time also increased drastically.

266 A. Abraham et al.

0 500 1000 1500 2000
46

47

48

49

50

51

52

53

54

55

56

Iteration

M
ak

es
p

an

GA
SA
PSO
ACO

Fig. 9.6. ACO algorithm performance for (3,13)

Table 9.5. Comparing the performance of the considered algorithms

InstanceAlgorithm Item
(3,13) (5,100)

Average makespan 47.1167 85.7431
GA Standard Deviation ±0.7700 ±0.6217

Time 302.9210 2415.9
Average makespan 46.6000 90.7338

SA Standard Deviation ±0.4856 ±6.3833
Time 332.5000 6567.8
Average makespan 46.2667 84.0544

PSO Standard Deviation ±0.2854 ±0.5030
Time 106.2030 1485.6
Average makespan 46.2667 88.1575

ACO Standard Deviation ±0.2854 ±0.6423
Time 340.3750 6758.3

9.4.3 Scheduling Using Evolutionary Multi-objective Optimization
Approach

Instead of considering the objectives involved by using techniques which com-
bines objectives and reduce the problem to a single objective one (as illustrated
in the previous Experiment sections), in this Section, we illustrate the use of
Pareto dominance concept and all the objectives are considered as independent.

Even though several optimization criteria can be considered, we considered a
bi-objective minimization problem with the task of minimization of makespan

9 Nature Inspired Meta-heuristics for Grid Scheduling 267

and flowtime. The most common approaches of a multiobjective optimization
problem use the concept of Pareto dominance as defined below:

Pareto Dominance Concept

Consider a maximization problem. Let x, ybe two decision vectors (solutions)
from the definition domain. Solution x dominate y (also written as x
 y), if
and only if the following conditions are fulfilled:

(i)fi(x) ≥ fi(y); ∀i= 1,2,. . . , n;
(ii) ∃j ∈{1, 2,. . . ,n} : fj(x) > fj(y).
That is, a feasible vector x is Pareto optimal if no feasible vector y can increase

some criterion without causing a simultaneous decrease in at least one other
criterion.

Multi-objective Evolutionary Algorithms (MOEA) can yield a whole set of
potential solutions, which are all optimal in some sense. The main challenge
in a multiobjective optimization environment is to minimize the distance of
the generated solutions to the Pareto set and to maximize the diversity of the
developed Pareto set. A good Pareto set may be obtained by appropriate guiding
of the search process through careful design of reproduction operators and fitness
assignment strategies. To obtain diversification special care has to be taken in the
selection process. Special care is also to be taken care to prevent non-dominated
solutions from being lost.

Solution Representation and Genetic Operators

The solution is represented as a string of length equal to the number of jobs. The
value corresponding to each position i in the string represent the machine to which
job i was allocated. Consider we have 10 jobs and 3 machines. Then a chromosome
and the job allocation is represented as follows:

1 2 3 2 1 1 3 2 1 3

Machine 1: Job1, Job 5, Job 6, Job 9
Machine 2: Job 2, Job 4, Job 8
Machine 3: Job 3, Job 7, Job 10

Mutation and crossover are used as operators and binary tournament selec-
tion was used in the implementation. The Pareto dominance concept is used in
order to compare 2 solutions. The one which dominates is preferred. In case of
nondominance, the solution whose jobs allocation between machines is uniform
is preferred. This means, there will not be idle machines as well as overloaded
machines. The evolution process is similar to the evolution scheme of a stan-
dard evolutionary algorithm for multiobjective optimization. Reader is advised
to consult [11] more details about MOEA approach.

268 A. Abraham et al.

Experiment Illustrations Using MOEA

We considered two scheduling instances (3,13) and (10,50). Specific parameter
settings for MOEA, SA, PSO and GA are depicted in Table 9.6. Each experiment
was repeated 10 times with different random seeds. Each trial (except for MOEA)
had a fixed number of 50∗m∗n iterations (m is the number of the grid nodes, n
is the number of the jobs). The makespan values of the best solutions throughout
the optimization run were recorded. First we tested a small scale job scheduling
problem involving 3 nodes and 13 jobs represented as (3,13). The node speeds
of the 3 nodes are 4, 3, 2 CPUT, and the job length of 13 jobs are 6, 12, 16, 20,
24, 28, 30, 36, 40, 42, 48, 52, 60 cycles, respectively. The results (makespan) for
10 runs are as follows:

Genetic Algorithm: {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49}, average
value = 47.1167

Table 9.6. Parameter settings for the different algorithms

Algorithm Parameter name Parameter value
Population size 20
Probability of crossover 0.8GA
Probability of mutation 0.02
Scale for mutations 0.1
Number operations

before temperature adjustment 20

Number of cycles 10
SA Temperature reduction factor 0.85

Vector for control step
of length adjustment 2

Initial temperature 50
Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1
Population size 100 (500 for the second experiment)
Number of generations 200 (1000 for the second experiment)MOEA
Mutation probability 1 (0.9 for the second experiment)
Crossover probability 1 (0.9 for the second experiment)

Table 9.7. Performance comparison for (10, 50)

Algorithm Average makespan
GA 38.04
SA 41.78
PSO 37.66
MOEA 36.68

9 Nature Inspired Meta-heuristics for Grid Scheduling 269

Fig. 9.7. Makespan from 31 non-dominated solutions in the final population for
(10, 50)

Fig. 9.8. Flowtime from 31 non-dominated solutions in the final population for (10, 50)

Simulated Annealing: {46.5, 46.5, 46, 46, 46, 46.6667, 47, 47.3333, 47, 47}
average value = 46.6

Particle Swarm Optimization Algorithm: {46, 46, 46, 46, 46.5, 46.5, 46.5,
46, 46.5, 46.6667}, average value = 46.2667

Multi-objective Optimization Algorithm: 46, 46, 46, 46, 46, 46, 46, 46, 46,
46, average value = 46

270 A. Abraham et al.

The optimal result for (3,13) makespan is supposed to be 46 and the MOEA
approach gave 46. It is to be noted that the MOEA approach obtained the best
results in each of the considered runs.

Further, we tested the MOEA approach for (10, 50). The average makespan
values for 10 trials are illustrated in Table 9.7. Although the average makespan
value of SA was better than that of GA for (3,13), the case was reversed for this
second case. Using the MOEA approach, the total average flow time obtained
is = 348.07. Figs. 9.7 and 9.4.3 illustrate the makespan and flow time given by
31 non-dominated solutions from the final population. The user would have the
option to go for a better flow time solution at the expense of a non-optimal
makespan. As evident from the figure, the lowest flow time was 343.72 with the
makespan of 44.75 for solution no. 27.

As evident from the empirical results, MOEA have given excellent results
when compared to other techniques modeled using a single objective approach.
Figs.9.7 and 9.4.3 illustrate the makespan and flow time given by 31 non-
dominated solutions from the final population. The user would have the option
to go for a better flow time solution at the expense of a non-optimal makespan.
As evident from the Figs. 9.7 and 9.4.3, the lowest flow time was 343.72 with
the makespan of 44.75 for solution no. 27. By seeing the population of solutions
as illustrated in Figs. 9.7 and 9.4.3, the user will have the option to choose a
particular schedule depending on the importance of the objectives. For example,
the user can give more preference to a schedule which could offer a minimal
flowtime but not an optimal makespan, etc.

9.5 Conclusions

In this Chapter, we illustrated the usage of several nature inspired meta-
heuristics for scheduling jobs. Our approach was to dynamically generate an
optimal schedule so as to complete the tasks in a minimum period of time
as well as utilizing the resources in an efficient way. We evaluated the perfor-
mance of the heuristic approaches using a single and multi-objective optimization
approaches.

Empirical results clearly illustrate the success of nature inspired heuristics
in providing real-time good solutions especially when the search space is very
huge. Our experiments also illustrate the importance and benefits of considering
the objectives separately (multi-objective optimization approach) rather than
combining them for the sake of simplicity.

Acknowledgments

F. Xhafa acknowledges partial support by Projects ASCE TIN2005-09198-
C02-02, FP6-2004-ISO-FETPI (AEOLUS) and MEC TIN2005-25859-E and
FORMALISM TIN2007-66523.

9 Nature Inspired Meta-heuristics for Grid Scheduling 271

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint For A New Computing Infrastruc-
ture. Morgan Kaufmann, USA (2004)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, CA (1979)

3. Martino, V.D., Mililotti, M.: Sub optimal scheduling in a grid using genetic algo-
rithms. Parallel Computing 30, 553–565 (2004)

4. Gao, Y., Rong, H.Q., Huang, J.Z.: Adaptive Grid Job Scheduling With Genetic
Algorithms. Future Generation Computer Systems 21, 151–161 (2005)

5. Pang, W., Wang, K.P., Zhou, C.G., et al.: Fuzzy discrete particle swarm optimiza-
tion for solving traveling salesman problem. In: Proceedings of the 4th Interna-
tional Conference on Computer and Information Technology. IEEE CS Press, Los
Alamitos (2004)

6. Abraham, A., Liu, H., Zhang, W., Chang, T.G.: Job Scheduling on Computational
Grids Using Fuzzy Particle Swarm Algorithm. In: Gabrys, B., Howlett, R.J., Jain,
L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 500–507. Springer, Heidelberg
(2006)

7. Grosan, C., Abraham, A., Helvik, B.: Multi-objective Evolutionary Algorithms
for Scheduling Jobs on Computational Grids. In: Guimaraes, N., Isaias, P. (eds.)
International Conference on Applied Computing 2007, Salamanca, Spain, pp. 459–
463 (2007) ISBN 978-972-8924-30-0

8. Abraham, A., Buyya, R., Nath, B.: Nature’s Heuristics For Scheduling Jobs on
Computational Grids. In: Proceedings of the 8th International Conference on
Advanced Computing and Communications, pp. 45–52. Tata McGraw-Hill, India
(2000)

9. Goldberg, D.E.: Genetic Algorithms in search, optimization, and machine learning.
Addison-Wesley Publishing Corporation, Inc., Reading (1989)

10. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, Ph. D. Thesis, Vanderbilt University, Nashville, TN (1984)

11. Abraham, A., Jain, L., Goldberg, R. (eds.): Evolutionary Multi-objective Opti-
mization: Theoretical Advances and Applications, ch. 12, p. 315. Springer, London
(2005)

12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

13. Yao, X.: A New Simulated Annealing Algorithm. International Journal of Com-
puter Mathematics 56, 161–168 (1995)

14. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
16. Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to the

traveling salesman problem. In: Proceedings of the 11th International Conference
on Machine Learning, pp. 252–260 (1995)

17. Stützle, T., Hoo, H.H.: MAX-MIN ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

18. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

19. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company, London
(2006)

272 A. Abraham et al.

20. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proceeding of IEEE conference on Evolutionary Computation, pp. 1671–1676
(2002)

21. Abraham, A., Liu, H., Chang, T.G.: Variable neighborhood particle swarm op-
timization algorithm. In: Genetic and Evolutionary Computation Conference
(GECCO 2006), Seattle, USA (2006)

22. Shi, Y.H., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Pro-
ceedings of IEEE International Conference on Evolutionary Computation, pp. 101–
106 (2001)

23. Liu, H., Abraham, A.: Fuzzy Adaptive Turbulent Particle Swarm Optimization. In:
Proceedings of the Fifth International conference on Hybrid Intelligent Systems,
pp. 445–450 (2005)

24. Clerc, M., Kennedy, J.: The Particle Swarm-explosion, Stability, and Convergence
in A Multidimensional Complex Space. IEEE Transactions on Evolutionary Com-
putation 6, 58–73 (2002)

25. Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization
Problems through Particle Swarm Optimization. Natural Computing 1, 235–306
(2002)

26. Abraham, A., Guo, H., Liu, H.: Swarm Intelligence: Foundations, Perspectives
and Applications. In: Nedjah, N., Mourelle, L. (eds.) Swarm Intelligent Systems.
Studies in Computational Intelligence, pp. 3–25. Springer, Germany (2006)

	Introduction
	Scheduling Problem Formulation
	Nature Inspired Meta-heuristics
	 Evolutionary Algorithms
	 Evolutionary Multi-objective Optimization
	 Simulated Annealing
	 Ant Colony Optimization
	 Particle Swarm Optimization
	 A Fuzzy Scheme Based on Particle Swarm Optimization

	Experimental Illustrations
	 Scheduling Using Fuzzy Particle Swarm Optimization Algorithm
	 Job Scheduling Using ACO
	 Scheduling Using Evolutionary Multi-objective Optimization Approach

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

