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A Trajectory Tracking Robust Controller of Surface Vessels
With Disturbance Uncertainties

Yang Yang, Jialu Du, Hongbo Liu, Chen Guo, and Ajith Abraham

Abstract— This brief considers the problem of trajectory track-
ing control for marine surface vessels with unknown time-variant
environmental disturbances. The adopted mathematical model of
the surface ship movement includes the Coriolis and centripetal
matrix and the nonlinear damping terms. An observer is con-
structed to provide an estimation of unknown disturbances and
is applied to design a novel trajectory tracking robust controller
through a vectorial backstepping technique. It is proved that
the designed tracking controller can force the ship to track the
arbitrary reference trajectory and guarantee that all the signals
of the closed-loop trajectory tracking control system of ships are
globally uniformly ultimately bounded. The simulation results
and comparisons illustrate the effectiveness of the proposed
controller and its robustness to external disturbances.

Index Terms—Disturbance observer, nonlinear, robust,
trajectory tracking control of vessels, vectorial backstepping.

I. INTRODUCTION

RAJECTORY tracking control of surface vessels is an

important control problem. It is of great significance for
navigation in safety, energy saving, and emission reduction.
It has attracted a great deal of attention from the control
community both in theory and in practice [1]. In [2], a
simplified linear model was used to develop an adaptive high
precision track controller for ships through a combination of
feed forward and linear-quadratic-Gaussian feedback control.
In fact, the tracking control for a ship has an inherently
nonlinear character. Taking advantage of the model free intel-
ligent control techniques, [3] presented a fuzzy proportional—
integral-derivative track autopilot for ships, and [4] developed
a neural network trajectory tracking controller for ships. In
recent years, several significant results have been presented
through applying nonlinear control techniques to the non-
linear maneuvering mathematical models of ships. Jiang [5]
proposed two global tracking control laws for underactu-
ated vessels using Lyapunov’s direct method. Petterson and
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Nijmeijer [6] illustrated a semiglobal exponential stabilization
of the tracking error for any desired trajectory using an inte-
grator backstepping approach. Furthermore, they developed an
exponential trajectory tracking control law for the ship based
on a coordinate transformation and integrator backstepping
with the aid of tracking control of chained form systems.
The effectiveness of the control law was validated by the
experimental results on a scale 1:70 model of an offshore
supply vessel in the laboratory [7]. Yu ef al. [8] introduced
the second-level sliding mode surface approach to design a
trajectory tracking control law for an underactuated ship with
parameter uncertainties. Wondergem et al. [9] presented an
observer-controller output feedback trajectory tracking con-
trol scheme with a semiglobal exponential stability for fully
actuated surface ships in the presence of the Coriolis and
centripetal matrix and the nonlinear damping terms.

On the other hand, the ships in the sea are always exposed
to the environmental disturbances induced by wind, waves,
and ocean currents. It is necessary to develop robust con-
trollers for external disturbances. Under constant disturbances,
a nonlinear trajectory tracking control law was designed for a
fully actuated ship simultaneously considering the Coriolis and
centripetal matrix and the nonlinear damping terms in [10].
Aschemann and Rauh [11] presented two alternative nonlin-
ear control approaches to track the trajectories through the
extended linearization technique, where the tracking accuracy
was improved significantly by introducing a compensating
control action provided by a disturbance observer for constant
disturbances. Using the backstepping technique, a discontin-
uous feedback control law [12] and a new family of smooth
time-varying dynamic feedback laws [13] have been derived
for underactuated surface vessels, respectively.

In general, the mathematical model of ships does not
simultaneously consider the Coriolis and centripetal matrix
and the nonlinear damping terms, or uncertain time-variant
environmental disturbances are not dealt with during the con-
trol design procedures. The sea state is, however, constantly
changing during the navigation of ships. For underactuated
ships, Do [14] provided a solution for the practical stabilization
through several nonlinear coordinate changes, the transverse
function approach, the backstepping technique, the Lyapunov’s
direct method, and usage of the ship dynamics.

For fully actuated surface vessels, this brief presents
a novel approach to solve the trajectory tracking control
problem. The mathematical model of the ship movement
simultaneously contains the Coriolis and centripetal matrix
and the nonlinear damping terms. The disturbances induced
by wind, waves, and currents are considered. Our pro-
posed approach is featured with a disturbance observer that

1063-6536 © 2013 IEEE
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Fig. 1.  Definition of the earth-fixed OX,Y, and the body-fixed AXY
coordinate frames.

is introduced to estimate the time-variant uncertain environ-
mental disturbances.

II. PROBLEM FORMULATION

Definition of the reference coordinate frames of ship motion
is shown in Fig. 1, where O X, Y, is the earth-fixed frame and
AXY is the body-fixed frame. The coordinate origin O of the
earth-fixed reference frame O X,Y, is the original position of
the desired trajectory. The axis OX, is directed to the North
and OY, is directed to the East. The coordinate origin A of
the body-fixed frame is taken as the geometric center point
of the ship structure. The axis AX is directed from aft to
fore, the axis AY is directed to starboard, and the normal axis
AZ is directed from top to bottom. Under the assumption that
the ship is port—starboard symmetric, the gravity center G is
located a distance x, between the gravity center of the ship and
the origin of the body-fixed frame along axis AX. The vector
n = [x,y, w]" is the actual track of the ship in the earth-
fixed frame, consisting of the ship position (x,y) and yaw
angle w € [0,2x]. The vector v = [u, v, r1T is the velocity
vector of the ship in the body-fixed frame. The variables u,
v, and r are, respectively, the forward velocity (surge), the
transverse velocity (sway), and the angular velocity in yaw of
the ship. Surge is decoupled from sway and yaw. Neglecting
the motions in heave, pitch and roll, the 3-DOF nonlinear
motion equations of a surface ship can be expressed as [15]

ey
)

where 7 = [r1,1,13]7 is the control input vector,
b(t) = [bi(t),ba(t),b3(t)]7 is the vector representing
unknown and time-variant external environmental disturbances
due to wind, waves, and ocean currents in the body-fixed
frame. Here, it is assumed that the changing rate of distur-
bances is bounded, i.e., || b(t) | < C4 < oo, where Cy is
a nonnegative constant. The above assumption is reasonable
because environmental energy applied to the ship is limited.
The matrix R(y) is rotation matrix defined as

n = R(y)v
Mv+Cwyw+DWw=1t+b

cosy —siny O
R(y)=|siny cosy O 3)
0 0 1

with the property R~!(y) = RT (). Here, M is nonsingular,
symmetric, and positive definite inertia matrix, C(v) is the
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matrix of Coriolis and centripetal terms, and D(v) is the
damping matrix. They are, respectively

mii 0 0
M = my  my3 4)

| 0 m3 m33
B 0 0 —mo0 — my3r

Cl) = 0 0 miu )
| M220 +mo3r  —miju 0
[d11(u) 0 0

D(v) = 0 dn(v,r) du(v,r) (6)
| 0 d(,r) d3(v,r)

In (4)—(6)

miyp=m— X,

my =m—1Y;

mp3 = mxg — Yr

m3y = mxg — Ny

m33 = I; — N;

di(u) = =Xy — Xjuulul

d22(0,r) ==Y, — Y\v\1)|v| - Y\r|v|r|
dy(v,r) = =Y, — Yipirlol = Yipirlr|
d3(v, 1) = =Ny — Npppp[v] = Nyppo 7|
d3(v, 1) = =Ny — Nppjrlo| = Nyjrlr|

where m is the mass of the ship, I, is the moment of inertia
about the yaw rotation, and the other symbols, for example,
Y, = 0Y/ou, are referred to as hydrodynamic derivatives.
The reader may refer to [16] for more details.

The control objective in this brief is to design a feedback
control law 7 for (1) and (2) such that the position and yaw
angle 7(¢) of ships tracks arbitrary smooth reference trajectory
n4(t), while it is guaranteed that all the signals of the resulting
closed-loop trajectory tracking system of a ship are globally
uniformly ultimately bounded.

Assumption 1: The desired smooth reference signal #4 is
bounded and has the bounded first and second time derivatives

11a and jq.

III. CONTROLLER DESIGN

In this section, a disturbance observer is designed to
estimate the unknown time-variant external environmental
disturbances of (1) and (2). Then, we present the robust
trajectory tracking controller for ships that solves the control
objective as stated in Section II. The closed-loop trajectory
tracking control system of a ship mainly consists of two
parts: 1) the ship subjected to external disturbances and
2) the trajectory tracking controller with the disturbance
observer. The schematic diagram is shown in Fig. 2.

A. Disturbance Observer Design

Using the exponential convergent observer for a general
nonlinear system from [14], we construct the disturbance
observer for the disturbance vector b of (1) and (2) as follows:

b = B+ KoMv (7)
B = —Kop — Ko[-C(w)v — D)y + 7 + KgMv] (8)
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reference

actual
trajectory

trajectory
—>
n

disturbances induced
T i by wind, waves and
ocean currents  p
I | observer | ¢
]
i
| ¥
" J

Na 1

Fig. 2. Diagram of the trajectory tracking control system of a ship.

where b = [51, 52, 53]T is a disturbance estimation, K¢ is a
3-by-3 positive definite symmetric observer gain matrix, and
p is a 3-D intermediate auxiliary vector.

Define the estimation error vector b = [151, by, 153]7 of
disturbance vector b as

b=b—b. )
From (2), (7), and (8), we have
b= p+ KoMv
= —Kof — Ko[-C(v)v — D(v)v + 7 + KoMV]
+Ko[—C(w)vy — D(w)v + 7 + b]
= Ko[b — (B + KoMv)]
= Ko(b — b). (10)
Then, the derivative of (9) is
b =b—Kolb—b)=b— Kob. (11)
Consider the following Lyapunov function candidate:
| .
Ve ==b"b. (12)
2
The time derivative of V, along the solution of (11) is
V, = bT (—Kob + b) = —bT Kob + b7 b. (13)
According to the following complete square inequality:
e JU— 1 ...
b"h < eb"h + 4—bTb (14)
e

where ¢ is a small positive constant, (13) can be rewritten as

; R
Ve < —Amin(Ko)b" b+ eb"b + EbTb

G
< —2[Amin(Ko) — &]Ve + E

= —aVetc (15)

where
Ci

= . 16

¢ 4e (16)

o = 2[Amin(Ko) — €] (17)

Amin(Ko) —& > 0 (18)

and Amin(+) represents the smallest eigenvalue of a matrix.
Therefore, we have the following theorem.

Theorem 1: The disturbance observer (7) and (8) guar-
antees that the disturbance estimation error b exponentially
converges to a ball Q centered at the origin with the radius

Ri = Cy/12/e(Amin(Ko) — €)]. The estimation error b of
disturbances can be made arbitrarily small by appropriately
adjusting the design matrix K¢y and parameter ¢ satisfying the
condition (18).
Proof: Solving (15), we have
Cc c | _
0<Velt) = —+ [Ve(O) - —]e “. (19)
o a
It is known from (19) that V, is ultimately bounded and
exponentially converges to a ball centered at the origin with the
radius Ry = C§ /[8&(Amin (Ko) — €)]. Furthermore, it is known
from the definition of V, that the disturbance estimation error
b exponentially converges to a ball Q; centered at the origin
with the radius Ry = Cg/[2v&(Amin(Ko) — €)]. Therefore, the
theorem is proved. [ ]
Remark 1: Inthe case Cy = 0, i.e., the disturbance vector is
unknown constant vector, the disturbance observer is exponen-
tially stable. The disturbance estimation error b exponentially
converges to zero.

B. Control Law Design

Let the desired position and yaw angle of ships be
na = [Xd, yd, l//d]T. First define the error vectors as follows:

(20)
21

Ne = 1M —Nd
Xezv—Xl

where X is the stabilization function vector of subsystem (2),
v is taken as the virtual control input vector. The control law
design consists of two steps.

Step 1: Consider the following Lyapunov function candi-
date:

1 7
Vi= 3 le Me: (22)
The derivative of 7, is given by
fle = 1 —ila = R(y)Xe + R(y) X1 — 7a. (23)

Then the time derivative of V; along the solution of (23) is

Vi = nlie = nl [R@)X = fal + 0] R X, (24)
We choose the stabilization function vector
X1 =R W)(=Cine + ita) (25)

where C; is a 3-by-3 positive definite symmetric design
parameter matrix.
Substituting (25) into (24) yields

Vi = gl [R(w)R™ (w)(—=Cie + 71a) — fal + 1 R (p) X,
= —nl'Cine + R (p) .. (26)

The coupling term 7R (y)X, will be cancelled in the next
step.
Step 2: From (2) and (21), we have

X, =v—X

=M '-CwWw—-—DOWw+1t+b—MX|]. 27)
Consider the augmented Lyapunov function candidate
1 QU
Vo =Vi+ EXEMXe + EbTb. (28)
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In terms of (11), (26), and (27), the time derivative of V),
is
Vi + X™MX, 4 57h
—ne Cine + X/ IRT (y)ne = C)v = D)
+7 +b—MX]-biRb+b7b.

Va

(29)
We design the control input vector as
t=CW)+ DWW+ MX; — RT () — CrX, — b (30)

where Cp is a 3-by-3 positive definite symmetric design
parameter matrix.

According to (20) and the property R~!(y) = RT (y), we
calculate the derivative of X as follows:

X1 = RT(W)[=C1(n — na) + ial

+RT(W=C1Gi = ) + iia)- 31
In addition, we have from (3)
. [—rsiny —rcosy 0
R(y) = rcosy —rsiny O
| 0 0 0
[cosy —siny O0][0 —r O
=|siny cosy O||r O O
| O 0 1{]0 0 O
= R(y)S(r) (32)
where
0 —r O
SHy=|r 0 O
0o 0 O
Then, we obtain
X1 = [R(y)SN [=Ci(g — n1a) + 7al
+RT(W[=C1 (i = ) + i) (33)

By substituting (7), (20), (21), and (33) into (30), (30) can
be rewritten as

t=—(MS"R"C1+ R" + C2RT C\)(n — na) + MR ijg
+(MSTRT + MRT Cy + CaRT )iy
+[C(v) + D) — MRTCiR — C3 — KoMv — B. (34)
Substituting (30) into (29) results in
Vo = =5l Cine + XI [RT (y)ne — C(0)v — D)y
+CW)v + D) + MX| — R(y)7e
—CoX, —b+b—MX]
—bTKob +b"b
==l Cine — X CoXe + X6 —b"Kob +b"b.  (35)
Considering (14) and the following complete square

inequalities:

x!b

IA

1 e
a1 X X, + —b"h (36)
481

IA

~XI'Cr X, < —Imin(CoMHXMx, (37)
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where ¢1 is a small positive constant, (35) can be rewritten as
VZ < _/Imin(cl)rlzne - imin(C2M71)XeTMX€

| O o 1
+e1 X X + EbTb—Amin(Ko)bTb +ebTh+ EbTb

< —2min I:jvmin(cl), jvmin(C2]M_1) - glimax(M_l)

1 1,
min(Ko) — 7= — ¢ Va 4 1-C] (38)
where
Amin(C2M 1) — &1 dmax (M1 > 0 (39)
1
Amin(Kg) —— —¢ >0 (40)
481

and Amax () represents the largest eigenvalue of a matrix.
Therefore, there is the following theorem.

Theorem 2: Under Assumption 1, for the 3-DOF nonlinear
motion mathematical model of ships with unknown time-
variant disturbances given by (2) and (2), the control input
vector 7 described by (34) together with (8) guarantees that
the actual trajectory of ships tracks the arbitrary reference
trajectory with the desired accuracy and all the signals of the
closed-loop trajectory tracking system of ships are globally
uniformly ultimately bounded by appropriately choosing the
design parameter matrices Ci, Cp, and Ko satisfying the
conditions (39) and (40).

Proof: Notate

4 = min |:/1min(cl); /Imin(C2M_1) - gllmax(M_l),

1
Amin(Ko) — P 8} 41
€1
Ci
=94 42
7 4e “2)
Then (38) can be rewritten as
Va(t) < —2uVa(t) + 0. (43)
Solving the above inequality, we have
0< V() < — + [Vz(O) - i]e—Zm. (44)
2u 2u

It is observed from (44) that V,(¢) is globally uniformly ulti-
mately bounded. Hence, #,, X,, and b are globally uniformly
ultimately bounded according to (28), then X} and v are
globally uniformly ultimately bounded. From the boundedness
of 54 and b, we know that # and b are bounded.

From (28) and (44), we can obtain

lz1ll < \/i + Z[Vz(O) - i}e‘zﬂ’-
JZ 2u

It follows that, for any p;, > /o /i, there exists a constant
T;, > 0, such that ||zy]| < ug for all + > T,. Therefore,
the trajectory tracking error z; of the ship can converge to the
compact set Q. = {z1 € R*|||z1]l < p,}. Since /o /u can
be made arbitrarily small if the design parameters Cy, C2, and
Ko are appropriately chosen, the actual trajectory of the ship
can track the arbitrary reference trajectory with the desired
accuracy. Theorem 2 is thus proved. [ ]

(45)
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Fig. 3. Constant external disturbances by, by, b3 and their estimations 131,
by, b3.

IV. SIMULATIONS AND COMPARISONS

In this section, the simulation studies are carried out on
CyberShip II, which is a 1:70 scale replica of a supply ship of
the Marine Cybernetics Laboratory in Norwegian University of
Science and Technology. The ship has the length of 1.255 m,
mass of 23.8 kg, and other parameters of the ship are given
in detail in [17].

We carry out the simulations with two different distur-
bances. In the simulations, the reference trajectory is chosen
as follows:

x4 = 4sin(0.02¢)
ya = 2.5(1 — cos(0.02¢))

wa = 0.02¢ (46)

which is an ellipse.

A. Trajectory Tracking Under Constant Disturbances

In this section, the disturbance vector is set as b =
[2 N,2 N,2 N-m]?, which corresponds to the environmen-
tal disturbances due to slowly varying wind, waves, and
currents. Assume the initial conditions of the system are
[x(0), y(0), w(0), u(0), v(0), 7(0)]" = [1 m,1 m, z/4 rad,
0 m/s,0 m/s,0 rad/s]” and the initial state of the dis-
turbance observer is 5(0) = [0,0,0]7. The design para-
meter matrices are taken as C; = diag[0.05,0.05,0.05],
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— reference trajectory
5t = = =actual trajectory |]
4t
3,
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Fig. 4. Actual and reference trajectories in xy-plane under constant
disturbances.
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Fig. 5. Desired and actual positions and yaw angles under constant
disturbances.

Cy = diag[120, 120, 120], Ko = diag[2, 2, 2] such that the
conditions (40) and (40) are satisfied for 0.125 < &1 < 9.6509
and 0 < ¢ < 1.9741. The results are shown in Figs. 3-7.
The external disturbances b and its estimate value b are shown
in Fig. 3 from which it is clearly observed that the disturbance
observer provides the rapidly exponentially convergent estima-
tion of unknown disturbances within about 1.5 s as proved in
Theorem 1. From Fig. 4, it is observed that the proposed con-
troller is able to force the ship to track the reference trajectory.
Furthermore, the curves of the desired and actual positions and
yaw angles are shown in Fig. 5, which shows that the actual
ship position (x, y) and yaw angle y can track the desired
trajectory nq = [x4, Vd, z//d]T at a good precision in around
40 s. The curves of the surge velocity u, sway velocity v and
yaw rate r versus time are shown in Fig. 6. The corresponding
control inputs are presented in Fig. 7, which shows that the
control force and torque are smooth and reasonable. These
results reveal that all the signals of the closed-loop trajectory
tracking system of ships are globally uniformly ultimately
bounded as proved in Theorem 2. Therefore, the proposed
trajectory tracking controller is effective for the ship with
uncertain constant disturbances.
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Fig. 7. Surge control force 71, sway control force 75, and yaw control torque
73 under constant disturbances.

B. Trajectory Tracking Under Time-Variant Disturbances

In this section, the disturbance vector is set as

[b1(2), ba (1), b3(1)]"
1.3+ 2.0sin(0.02¢) + 1.5sin(0.17) N
—0.9 +2.05in(0.02f — 7 /6) + 1.55in(0.37) N
—sin(0.09¢t + 7 /3) — 4sin(0.017) N-m

b(t)

The initial conditions of the system and the design parame-
ters of controller are same as the counterparts in the first
case of Section III-A. The results are shown in Figs. 8-12,
which exhibit almost the same control performance as under
constant disturbances despite the time-variant disturbances. It
is obvious that the designed controller is effective when the
ship is exposed to both unknown constant and time-variant
disturbances, which demonstrates that the proposed controller
is robust against unknown environmental disturbances.

C. Performance Comparisons

In this section, we compare the tracking performance of
the designed controller (34) in this brief with the controller
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Fig. 9. Actual and reference trajectories in xy-plane under time-variant
disturbances.

without disturbance observer
Tem = —(MSTRT Com1 + RT + Cema RT Cem1) (7 — 114)
+[M(STRT + RT Cem1) + Cema2 RT1ija + MR iy
+[CW) + D) — MRT Cem1 R — Cema v

t
~Kem / v+ R Comi (7 — na) — R ig1dd  (47)
0

which is designed using the backstepping approach for
the ship with constant disturbances in [10] with gains
Cem1 = diag[0.05, 0.05, 0.05], Cemp = diag[120, 120, 120],
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Fig. 10. Desired and actual positions and yaw angles under time-variant
disturbances.

0.1 " ; . . !

u/m-s7!

_01 L L L 1 1
0 50 100 150 200 250 300
0.1 " ; : . !

0 V/\f
_01 L L L 1 1
0 50 100 150 200 250 300

0.05 " i ; . .

v/m-s71

r/rad - s~
=3

_005 L L L 1 1
0 50 100 150 200 250 300

t/s

Fig. 11. Surge velocity u, sway velocity v, and yaw rate r under time-variant
disturbances.
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Fig. 12.  Surge control force 71, sway control force 77, and yaw control
torque 73 under time-variant disturbances.

and K. = diag[2,2,2]. Figs. 13 and 14 show the com-
parison of tracking performance between the two different
controllers under constant disturbances and time-variant dis-
turbances, respectively. It can be observed from Fig. 13
that both the controller exhibit similarly good transient and
steady-state performances under the constant disturbances.
Under time-variant disturbances, it is, however, observed from
Fig. 14 that the controller  with disturbance observer in

Controller 7
== Controller 7.,,

[lz1l

t/s
Fig. 13. Comparison of tracking performance under constant disturbances.
2 : : : ‘ ;
Controller 7
== Controller 7.,,
& i
2% S, ‘ir-"' Y
" (R Vs
150 200 250 300
t/s
Fig. 14.  Comparison of tracking performance under time-variant distur-
bances.

TABLE I
PERFORMANCE INDEX COMPARISON OF CONTROLLERS 7 AND 7¢py
UNDER DIFFERENT DISTURBANCES

Disturbances Constant Time-variant
Controller T Tom T Tem
settling time t4(s) 39 56 41 64
fot Finalpo|dt(m-s)  19.4765 256207 19.8225  52.0868
fotfm“’ lye|dt(m-s)  17.8455 40.7659  18.2010  55.9768
f(ff““” [tpe|dt(rad -s)  13.6354 351542 135816  44.8413

this brief performs better than the backstepping controller
7em With a faster decay of tracking error and lower steady-
state error value because our observer provides an estimation
of unknown disturbances. In contrast, 7., does not have
disturbance compensation and results in a larger tracking error
norm.

To quantitatively compare the two controller performance,
the performance under both constant and time-variant distur-
bances is summarized in Table I, where x, = x4 — x and
Ye = Y4 — y representing the error between the desired and
actual positions, y, = wg —  representing the error between
the desired and actual yaw angles, and tfpy = 300 s. Table I
clearly shows that the controller r has better steady state and
transient performance than the backstepping controller z¢p.
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V. CONCLUSION

In this brief, a trajectory tracking robust control law has
been designed for fully actuated surface vessels in the presence
of uncertain time-variant disturbances due to wind, waves, and
ocean currents. Both the Coriolis and centripetal matrix and
the nonlinear damping terms have been considered in the non-
linear ship surface movement mathematical model. The control
strategy is introduced by the vectorial backstepping technique
with our disturbance observer. The disturbance observer is
employed to compensate disturbance uncertainties. It has
been proved that all the signals of the resulting closed-loop
trajectory tracking system of the ship are globally uniformly
ultimately bounded. Furthermore, the simulation results on an
offshore supply ship model has illustrated that our controller
is effective and robust to external disturbances. Our proposed
trajectory tracking control scheme can provide good transient
and steady-state performance for the considered ship system.

Future research would extend the proposed method to
address the robust adaptive output feedback tracking of ships
subjected to external disturbances and model uncertainties
only depending on the position information = [x, y, w]7.
From a practical viewpoint, it is convenient since it does not
have to measure the velocities v = [u, v, ] directly.
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